早教吧作业答案频道 -->其他-->
如图,半径为6.5的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+60=0的两根.(1)求A、B两点的距离以及点A和点B的坐标;(2)已知点C在劣弧OA
题目详情
如图,半径为6.5的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>
OB)的长分别是方程x2+kx+60=0的两根.
(1)求A、B两点的距离以及点A和点B的坐标;
(2)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•BC时,求点C的坐标;
(3)若在以点C为顶点,且过点B的抛物线上和在⊙O′上是否分别存在点P,使△ABD的面积等于△POD的面积,即S△ABD=S△POD?若存在,请求出点P的坐标;如果不存在,请说明理由.

(1)求A、B两点的距离以及点A和点B的坐标;
(2)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•BC时,求点C的坐标;
(3)若在以点C为顶点,且过点B的抛物线上和在⊙O′上是否分别存在点P,使△ABD的面积等于△POD的面积,即S△ABD=S△POD?若存在,请求出点P的坐标;如果不存在,请说明理由.
▼优质解答
答案和解析
(1)连接AB,

∵∠BOA=90°,
∴AB为直径,由根与系数关系得OA+OB=-k,OA•OB=60,
根据勾股定理,得OA2+OB2=169,
即(OA+OB)2-2OA•OB=169,
解得k2=289,
故k=±17(正值舍去).
则有方程x2-17x+60=0,
解得:x=12或5.
又∵OA>OB,
∴OA=12,OB=5.
(2)若OC2=CD•CB,则△OCB∽△DCO,
∴∠COD=∠CBO,
又∵∠COD=∠CBA,
∴∠CBO=∠CBA,
∴点C是弧OA的中点.
连接O′C交OA于点E,根据垂径定理的推论,得O′C⊥OA,

根据垂径定理,得OE=6,根据勾股定理,得O′E=2.5,
故CE=4,即点C坐标为(6,-4).
(3)假定在⊙上存在点P,使S△ABD=S△POD,

∵OB∥EC,
∴△OBD∽△ECD,
∴
=
,即
=
,
解得OD=
,
∴S△ABD=
AD•BO=
,
∴S△POD=
,
故可得在△POD中,OD边上的高为13,即点P到x轴的距离为13,
∵⊙上的点到x轴的最大距离为9,
∴点P不在⊙上,
故在⊙上不存在点P,使S△ABD=S△POD.

∵∠BOA=90°,
∴AB为直径,由根与系数关系得OA+OB=-k,OA•OB=60,
根据勾股定理,得OA2+OB2=169,
即(OA+OB)2-2OA•OB=169,
解得k2=289,
故k=±17(正值舍去).
则有方程x2-17x+60=0,
解得:x=12或5.
又∵OA>OB,
∴OA=12,OB=5.
(2)若OC2=CD•CB,则△OCB∽△DCO,
∴∠COD=∠CBO,
又∵∠COD=∠CBA,
∴∠CBO=∠CBA,
∴点C是弧OA的中点.
连接O′C交OA于点E,根据垂径定理的推论,得O′C⊥OA,

根据垂径定理,得OE=6,根据勾股定理,得O′E=2.5,
故CE=4,即点C坐标为(6,-4).
(3)假定在⊙上存在点P,使S△ABD=S△POD,

∵OB∥EC,
∴△OBD∽△ECD,
∴
OB |
EC |
OD |
ED |
5 |
4 |
OD |
6−OD |
解得OD=
10 |
3 |
∴S△ABD=
1 |
2 |
65 |
3 |
∴S△POD=
65 |
3 |
故可得在△POD中,OD边上的高为13,即点P到x轴的距离为13,
∵⊙上的点到x轴的最大距离为9,
∴点P不在⊙上,
故在⊙上不存在点P,使S△ABD=S△POD.
看了 如图,半径为6.5的⊙O′经...的网友还看了以下:
已知圆x平方+y平方+x-6y+m=0和直线x+2y-3=0交于P,Q两点 且OP⊥OQ(O为坐已 2020-05-13 …
已知直线l经过3x+4y-2=0与直线2x+y+2=0的交点P,且垂直于直线x-2y-1=0 求直 2020-05-16 …
数学题急在线等高中数学设F是抛物线C1:y^2=2px的焦点,点A是抛物线与双曲线C2:X^2/a 2020-05-16 …
求满足以下条件的直线方程:(1)经过两条直线2x-3y+10=0和3x+4y-2=0的交点,且平行 2020-05-17 …
在平面直角坐标系中,已知x轴上两个点A(2m-6,0),B(4,0)分别在原点两侧,且A、B两点间 2020-06-14 …
角α的顶点与直角坐标系原点O重合,始边与x轴的非负半轴重合,终边与单位圆交于点P,且α∈(0,π) 2020-07-30 …
已知三角形ABC,P为三角形所在平面上的动点点,且点P满足PA·PC+PA·PB+PB·PC=0则 2020-07-30 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A.B两点,且点A的横坐标为4,不能用点 2020-08-01 …
已知O为平面内一点,ABC是平面内不共线的三点,且0分OP=1/2(OB+OC)+λ(A已知O为平 2020-08-01 …
求下列满足条件的直线的方程(1)经过两条直线2x-3y+10=0和3x+4y-2=0交点,且求下列满 2020-10-31 …