早教吧作业答案频道 -->其他-->
高中圆锥曲线.已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,直线PA和PB的斜率分别为k1,k2,
题目详情
高中圆锥曲线.已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,
已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,直线PA和PB的斜率分别为k1,k2,若K1K2=2求证:直线AB过定点.
记得有一种解法是把K1、K2用X1、X2表示出来,有两种表示方式.然后k1k2可以写成两个方程,联立,带入直线AB的方程求到定点.但是我忘了怎样用两种办法k1、k2,
已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,直线PA和PB的斜率分别为k1,k2,若K1K2=2求证:直线AB过定点.
记得有一种解法是把K1、K2用X1、X2表示出来,有两种表示方式.然后k1k2可以写成两个方程,联立,带入直线AB的方程求到定点.但是我忘了怎样用两种办法k1、k2,
▼优质解答
答案和解析
设直线PA的斜率为1/k1(这么设是为了计算方便)
直线PB的斜率为1/k2
根据题意k1k2=1/2
A(x1,y1),B(x2,y2)
那么PA:x-1=k1(y-2)
与抛物线C:y^2=4x联立
得到y^2-4k1y+8k1-4=0
根据韦达定理得到
y1+2=4k1
所以y1=4k1-2
x1=(2k1-1)^2
所以A((2k1-1)^2,4k1-2)
把k1换成k2
得到了B((2k2-1)^2,4k2-2)
所以KAB=1/(k1+k2-1)
写出AB的方程y-(4k1-2)=[x-(2k1-1)^2]/(k1+k2-1)
把k1k2=1/2带入,并整理后得到
(k1+k2-1)y=x-2k1-2k2
所以(k1+k2)(y+2)=x+y
只要令y+2=0
x+y=0
解得x=2,y=-2
所以恒过点(2,-2)
直线PB的斜率为1/k2
根据题意k1k2=1/2
A(x1,y1),B(x2,y2)
那么PA:x-1=k1(y-2)
与抛物线C:y^2=4x联立
得到y^2-4k1y+8k1-4=0
根据韦达定理得到
y1+2=4k1
所以y1=4k1-2
x1=(2k1-1)^2
所以A((2k1-1)^2,4k1-2)
把k1换成k2
得到了B((2k2-1)^2,4k2-2)
所以KAB=1/(k1+k2-1)
写出AB的方程y-(4k1-2)=[x-(2k1-1)^2]/(k1+k2-1)
把k1k2=1/2带入,并整理后得到
(k1+k2-1)y=x-2k1-2k2
所以(k1+k2)(y+2)=x+y
只要令y+2=0
x+y=0
解得x=2,y=-2
所以恒过点(2,-2)
看了 高中圆锥曲线.已知A(x1,...的网友还看了以下:
已知点P是抛物线Y=(1/4)X(2)+1上的任意一点,记点P到X轴的距离为d1,P与点F(0,2 2020-04-05 …
动点P满足PO*PO=PA*PB求PA,PB的范围A,B是一个圆与X轴的2交点(注意:圆的原点任意 2020-05-13 …
两个附加题,最好今天晚上答复,急用1如图,已知点P在三角形ABC任意一点,试说明∠A与∠P的关系. 2020-05-13 …
点P是矩形ABCD的边AD上的一个动点,矩形的两条边长AB、BC分别为8和15,求点P到矩形的两条 2020-05-20 …
在等腰三角形ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的的任意一点在等腰△ABC中 2020-05-20 …
1)数学课上,张老师出示了问题:如图:△ABC是等腰直角三角形,∠ACB=90°,AB⊥BF,点P 2020-05-23 …
如图Rt△ABC中,∠ABC=90°,AB=8,BC=6,点M,P分别从点B和点C同时出发,点M沿 2020-07-13 …
等边三角形OBC的边长为10,点p沿O→B→C→O的方向运动等边三角形OBC的边长为10,点P沿O 2020-07-22 …
如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点,过点P作PM⊥AB于M 2020-07-25 …
如图,点P是函数y=4/x在第一象限的图像上的任意一点,点P关于原点的对称点是P’,过点P做PA平 2020-07-29 …