早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.

题目详情
作业帮如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.
(1)若DG=2,求证:四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积.
▼优质解答
答案和解析
(1)证明:∵四边形EFGH为菱形,
∴HG=EH,
∵AH=2,DG=2,
∴DG=AH,
在Rt△DHG和△AEH中,
HG=EH
DG=AH

∴Rt△DHG≌△AEH,
∴∠DHG=∠AEH,
∵∠AEH+∠AHG=90°,
∴∠DHG+∠AHG=90°,
∴∠GHE=90°,
∵四边形EFGH为菱形,
∴四边形EFGH为正方形;
(2) 作FQ⊥CD于Q,连结GE,如图,
作业帮∵四边形ABCD为矩形,
∴AB∥CD,
∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,
∵四边形EFGH为菱形,
∴HE=GF,HE∥GF,
∴∠HEG=∠FGE,
∴∠AEH=∠QGF,
在△AEH和△QGF中
∠A=∠Q
∠AEH=∠QGF
HE=FG

∴△AEH≌△QGF,
∴AH=QF=2,
∵DG=6,CD=8,
∴CG=2,
∴△FCG的面积=
1
2
CG•FQ=
1
2
×2×2=2.