早教吧作业答案频道 -->数学-->
如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH=.
题目详情
如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH=___.


▼优质解答
答案和解析
证明:延长FB到点M,使BM=DG,连接CM
∵△ABD是等边三角形,
∴AD=BD,∠A=∠ABD=60°,
在△AED与△DFB中,
,
∴△AED≌△DFB(SAS),
∴∠ADE=∠DBF,
∵∠CDG=∠ADC-∠ADE=120°-∠ADE,∠CBM=120°-∠DBF,
∴∠CBM=∠CDG,
∵△DBC是等边三角形,
∴CD=CB,
在△CDG和△CBM中,
∴△CDG≌△CBM,
∴∠DCG=∠BCM,CG=CM,
∴∠GCM=∠DCB=60°,
∴△CGM是等边三角形,
∴CG=GM=BG+BM=BG+DG,
∵(a+b)2=a2+b2+2ab=9,
∴a+b=3,
∴CG=3,
∴GH=
CG=
.
故答案为:
.
证明:延长FB到点M,使BM=DG,连接CM∵△ABD是等边三角形,
∴AD=BD,∠A=∠ABD=60°,
在△AED与△DFB中,
|
∴△AED≌△DFB(SAS),
∴∠ADE=∠DBF,
∵∠CDG=∠ADC-∠ADE=120°-∠ADE,∠CBM=120°-∠DBF,
∴∠CBM=∠CDG,
∵△DBC是等边三角形,
∴CD=CB,
在△CDG和△CBM中,
|
∴△CDG≌△CBM,
∴∠DCG=∠BCM,CG=CM,
∴∠GCM=∠DCB=60°,
∴△CGM是等边三角形,
∴CG=GM=BG+BM=BG+DG,
∵(a+b)2=a2+b2+2ab=9,
∴a+b=3,
∴CG=3,
∴GH=
| 1 |
| 2 |
| 3 |
| 2 |
故答案为:
| 3 |
| 2 |
看了 如图,△ADB、△BCD都是...的网友还看了以下:
如图所示,正三角形ABC的三个顶点上分别有-q、+q、+q三个点电荷,G为三角形的几何中心,N为B 2020-04-11 …
已知化学反应2C(s)+O2(g) 点燃 . 2CO(g),2CO(g)+O2(g) 点燃 . 2 2020-05-13 …
已知圆M:(x+3a)2+y2=16a2(a>0)及定点N(3a,0),点P是圆M上的动点,点G在 2020-05-15 …
如图 将平行四边形abcd纸片沿EF折叠,使点C与点A重合,点D落在点G处.(1)求证:AE=AF 2020-05-15 …
要测量海岛上一座山峰A的高度AH,立俩根三丈高的标杆BC和DE,两根干相距BD=1000步,D,B 2020-05-16 …
要测量海岛上一座山峰A的高度AH,立两根高三丈的标竿BC和DE,两杆相距BD=1000步,B.D. 2020-05-23 …
有关二阶导的问题设f(x),g(x)在点a处可导,且f(a)=g(b)=0,f'(a)*g'(a) 2020-06-18 …
设f(x)在(-∞,+∞)内有定义,且limx→∞f(x)=a,g(x)=f(1x),x≠00,x 2020-07-16 …
已知椭圆G:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,右焦点为(2√2, 2020-07-31 …
下列说法正确的是()A.由图甲可知,升高温度醋酸钠的水解程度增大B.由图乙可知,a点Kw的数值比b点 2020-11-03 …