早教吧作业答案频道 -->数学-->
双曲线.斜率.已知A、B、P是双曲线x^2/a^2-y^2-b^2=1上不同的三点,且A、B两点关于原点O对称,若直线PA,PB的斜率乘积=二分之一,则该双曲线的离心率为?
题目详情
双曲线.斜率.
已知A、B、P是双曲线x^2/a^2-y^2-b^2=1上不同的三点,且A、B两点关于原点O对称,若直线PA,PB的斜率乘积=二分之一,则该双曲线的离心率为?
已知A、B、P是双曲线x^2/a^2-y^2-b^2=1上不同的三点,且A、B两点关于原点O对称,若直线PA,PB的斜率乘积=二分之一,则该双曲线的离心率为?
▼优质解答
答案和解析
题目中双曲线方程应该是x^2/a^2-y^2/b^2=1 把
设点P为(c,d),点A为(x,y),
由A、B两点关于原点O对称,则点B为(-x,-y),
PA,PB的斜率乘积=[(d-y)/(c-x)]× [(d+y)/(c+x) ]=(d^2-y^2)/(c^2-x^2)=1/2,
故c^2-x^2=2(d^2-y^2)
由x^2/a^2-y^2/b^2=1①,c^2/a^2-d^2/b^2=1②
②-①,得(c^2-x^2)/a^2 -(d^2-y^2)/b^2=0,
故(c^2-x^2)/(d^2-y^2)=a^2/b^2,又c^2-x^2=2(d^2-y^2)
故a^2/b^2=2 /1,
设离心率为e,
故e^2=c^2 /a^2=(a^2+b^2)/a^2=(2 b^2+b^2)/(2 b^2)=3/2
故双曲线的离心率e=√6 /2
设点P为(c,d),点A为(x,y),
由A、B两点关于原点O对称,则点B为(-x,-y),
PA,PB的斜率乘积=[(d-y)/(c-x)]× [(d+y)/(c+x) ]=(d^2-y^2)/(c^2-x^2)=1/2,
故c^2-x^2=2(d^2-y^2)
由x^2/a^2-y^2/b^2=1①,c^2/a^2-d^2/b^2=1②
②-①,得(c^2-x^2)/a^2 -(d^2-y^2)/b^2=0,
故(c^2-x^2)/(d^2-y^2)=a^2/b^2,又c^2-x^2=2(d^2-y^2)
故a^2/b^2=2 /1,
设离心率为e,
故e^2=c^2 /a^2=(a^2+b^2)/a^2=(2 b^2+b^2)/(2 b^2)=3/2
故双曲线的离心率e=√6 /2
看了 双曲线.斜率.已知A、B、P...的网友还看了以下:
如图所示,A、B两个小球质量相等,用一根轻绳相连,另有一根轻绳的两端分别连接O点和B点,让两个小球 2020-06-19 …
汽车后备箱的掀盖一般都有可伸缩的液压杆,如图甲所示,乙图为简易侧视示意图,液压杆上端固定于后盖上A 2020-06-25 …
如图所示,用等长的绝缘线分别悬挂两个质量、电荷量都相同的带电小球A和B,两线上端固定于O点,B球固 2020-06-26 …
如图:O点是这根小棒的中点.(1)小棒绕O点旋转一周,A点转动轨迹的长度是多少分米?(2)小棒绕A 2020-07-20 …
如图所示,在竖直平面内有半径为R="0.2"m的光滑1/4圆弧AB,圆弧B处的切线水平,O点在B点 2020-07-31 …
在“探究单摆摆长与周期关系”的实验中,某同学的主要操作步骤如下:A.取一根符合实验要求的摆线,下端 2020-07-31 …
如图所示,在竖直平面内有半径为R=0.2m的光滑14圆弧AB,圆弧B处的切线水平,O点在B点的正下 2020-07-31 …
点A.B.C.D.E在圆上,且弧AB=弧BC=弧CD=弧DE=弧EA,求证五边形ABCDE是圆O点 2020-08-03 …
让小球从斜面的顶端滚下,如图所示是用闪光照相机拍摄的小球在斜面上运动的一段,已知闪频为10Hz,且O 2020-11-25 …
如图所示,棒长5m悬挂于O点,B、C两点相距20m,位于悬点正下方,棒的下端A与B点相距20m,将棒 2020-12-30 …