早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知等比数列an的公比为q,(q≠1),其前n项和为Sn(1)若a3=1/4,且q=-1/2,求数列An的前n项和;(2)在(1)的条件下,证明:对任意k∈N+,Ak,Ak+2,Ak+1成等差数列;(3)若A5,A3,A4成等差数列,证明:对任

题目详情
已知等比数列an的公比为q,(q≠1),其前n项和为Sn
(1)若a3=1/4,且q=-1/2,求数列An的前n项和;
(2)在(1)的条件下,证明:对任意k∈N+,Ak,Ak+2,Ak+1成等差数列;
(3)若A5,A3,A4成等差数列,证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
▼优质解答
答案和解析
1.Sn=a1(1-qⁿ)/(1-q)=(a3/q²)(1-qⁿ)/(1-q)=[(1/4)/(-1/2)²][1-(-1/2)ⁿ]/[1-(-1/2)]=(2/3)[1-(-1/2)ⁿ]2.an=a1q^(n-1)=a3q^(n-3)=(1/4)(-1/2)^(n-3)=(-1/2)^(n-1)2a(k+2)=2×(-1/2)...