早教吧作业答案频道 -->其他-->
(2011•营口)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,
题目详情
(2011•营口)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.
(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);
(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)

(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);
(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)

▼优质解答
答案和解析
(1)①PE=PB,②PE⊥PB.
(2)(1)中的结论成立.
①∵四边形ABCD是正方形,AC为对角线,
∴CD=CB,∠ACD=∠ACB,
又 PC=PC,
∴△PDC≌△PBC,
∴PD=PB,
∵PE=PD,
∴PE=PB,
②:由①,得△PDC≌△PBC,
∴∠PDC=∠PBC.(7分)
又∵PE=PD,
∴∠PDE=∠PED.
∴∠PDE+∠PDC=∠PEC+∠PBC=180°,
∴∠EPB=360°-(∠PEC+∠PBC+∠DCB)=90°,
∴PE⊥PB.
(3)如图所示:

结论:①PE=PB,②PE⊥PB.
(2)(1)中的结论成立.
①∵四边形ABCD是正方形,AC为对角线,
∴CD=CB,∠ACD=∠ACB,
又 PC=PC,
∴△PDC≌△PBC,
∴PD=PB,
∵PE=PD,
∴PE=PB,
②:由①,得△PDC≌△PBC,
∴∠PDC=∠PBC.(7分)
又∵PE=PD,
∴∠PDE=∠PED.
∴∠PDE+∠PDC=∠PEC+∠PBC=180°,
∴∠EPB=360°-(∠PEC+∠PBC+∠DCB)=90°,
∴PE⊥PB.
(3)如图所示:

结论:①PE=PB,②PE⊥PB.
看了 (2011•营口)已知正方形...的网友还看了以下:
1.已知平行四边形ABCD的三个顶点A,B,C的坐标分别为(-2,1),(-1,3),(3,4), 2020-05-13 …
(有关正弦余弦定理) 1.已知△ABC的面积为根号3,B=60度,b=4,则a= ,c= (A>C 2020-05-15 …
已知A(1/3,1/a),B(1/4,1/b),C(1/5,1/c)满足a/(b+c)=1/3,b 2020-05-16 …
已知△ABC的三个顶点分别为A(2,3),B(-1,-2)C(-3,4),求已知三角形ABC的三个 2020-05-16 …
已知三角形AbC三个顶点分别为A(-1,-4),B(5,2),C(2根号2-1,4).求证三角形A 2020-06-05 …
已知三角形AbC三个顶点分别为A(-1,-4),B(5,2),C(2根号2-1,4).求证三角形A 2020-06-05 …
已知三角形三个顶点的坐标.已知三角形三个顶点的坐标分别为A(4,1),B(0,3),C(2,4), 2020-08-01 …
已知三角形ABC的三个顶点,A(1,3)B(-4,1)C(2,-1)1.若三角形ABC中任意一点P 2020-08-02 …
大哥大姐帮帮忙啊,赏分(1)在三角形ABC中,已知角c=90°,两直角边a:b=3:4,斜边c=20 2020-11-27 …
已知三角形abc的顶点坐标分别为A(0,3),B(1,4),C(2,6)已知三角形ABC的顶点坐标分 2021-01-07 …