早教吧 育儿知识 作业答案 考试题库 百科 知识分享

对于定义域为R的函数g(x),若函数sin[g(x)]是奇函数,则称g(x)为正弦奇函数.已知f(x)是单调递增的正弦奇函数,其值域为R,f(0)=0.(1)已知g(x)是正弦奇函数,证明:“u0为

题目详情
对于定义域为R的函数g(x),若函数sin[g(x)]是奇函数,则称g(x)为正弦奇函数.已知f(x)是单调递增的正弦奇函数,其值域为R,f(0)=0.
(1)已知g(x)是正弦奇函数,证明:“u0为方程sin[g(x)]=1的解”的充要条件是“-u0为方程sin[g(x)]=-1的解”;
(2)若f(a)=
π
2
,f(b)=-
π
2
,求a+b的值;
(3)证明:f(x)是奇函数.
▼优质解答
答案和解析
证明(1)∵g(x)是正弦奇函数,
故sin[g(x)]是奇函数,
当:“u0为方程sin[g(x)]=1的解”时,sin[g(u0)]=1,
则sin[g(-u0)]=-1,
即“-u0为方程sin[g(x)]=-1的解”;
故:“u0为方程sin[g(x)]=1的解”的必要条件是“-u0为方程sin[g(x)]=-1的解”;
当:“-u0为方程sin[g(x)]=-1的解”时,sin[g(-u0)]=-1,
则sin[g(u0)]=1,
即“u0为方程sin[g(x)]=1的解”;
故:“u0为方程sin[g(x)]=1的解”的充分条件是“-u0为方程sin[g(x)]=-1的解”;
综上可得:“u0为方程sin[g(x)]=1的解”的充要条件是“-u0为方程sin[g(x)]=-1的解”;
(2)∵f(x)是单调递增的正弦奇函数,
f(a)=
π
2
,f(b)=-
π
2

则sin[f(a)]+sin[f(b)]=1-1=0,
则a=-b,
则a+b=0
证明:(3)∵f(x)是单调递增的正弦奇函数,其值域为R,f(0)=0.
故sin[f(-x)]+sin[f(x)]=0,
即sin[f(-x)]=-sin[f(x)]=sin[-f(x)],
f(-x)=-f(x),
故f(x)是奇函数.