早教吧作业答案频道 -->数学-->
如图,已知抛物线y=-x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)联结CD、BC,求∠DBC余切值;(3
题目详情
如图,已知抛物线y=-x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.

(1)求点D的坐标;
(2)联结CD、BC,求∠DBC余切值;
(3)设点M在线段CA延长线,如果△EBM和△ABC相似,求点M的坐标.

(1)求点D的坐标;
(2)联结CD、BC,求∠DBC余切值;
(3)设点M在线段CA延长线,如果△EBM和△ABC相似,求点M的坐标.
▼优质解答
答案和解析
(1)∵已知抛物线y=-x2+bx+3与y轴交于点C,
∴点C的坐标为:(0,3),
∵OB=OC,
∴点B的坐标为:(3,0),
∴-9+3b+3=0,
解得,b=2,
∴抛物线的解析式为:y=-x2+2x+3,
y=-x2+2x+3=-(x-1)2+4,
∴顶点D的坐标为(1,4);
(2)如图1,作DH⊥y轴于H,
则CH=DH=1,
∴∠HCD=∠HDC=45°,
∵OB=OC,
∴∠OCB=∠OBC=45°,
∴∠DCB=90°,
∴cot∠DBC=
=
=3;
(3)-x2+2x+3=0,
解得,x1=-1,x2=3,
∴点A的坐标为:(-1,0),
∴
=
,又
=
,
∴
=
,
∴Rt△AOC∽Rt△DCB,
∴∠ACO=∠DBC,
∵∠ACB=∠ACO+45°=∠DBC+∠E,
∴∠E=45°,
∵△EBM和△ABC相似,∠E=∠ABC=45°,
∴∠ACB=∠BME,
∴BM=BC,
设直线CA的解析式为:y=kx+b,
则
,
解得,
,
则直线CA的解析式为:y=3x+3,
设点M的坐标为(x,3x+3),
则(x-3)2+(3x+3)2=18,
解得,x1=0(舍去),x2=-
,
x2=-
时,y=-
,
∴点M的坐标为(-
,-
∴点C的坐标为:(0,3),

∵OB=OC,
∴点B的坐标为:(3,0),
∴-9+3b+3=0,
解得,b=2,
∴抛物线的解析式为:y=-x2+2x+3,
y=-x2+2x+3=-(x-1)2+4,
∴顶点D的坐标为(1,4);
(2)如图1,作DH⊥y轴于H,
则CH=DH=1,
∴∠HCD=∠HDC=45°,
∵OB=OC,

∴∠OCB=∠OBC=45°,
∴∠DCB=90°,
∴cot∠DBC=
BC |
DC |
3
| ||
|
(3)-x2+2x+3=0,
解得,x1=-1,x2=3,
∴点A的坐标为:(-1,0),
∴
OA |
OC |
1 |
3 |
DC |
BC |
1 |
3 |
∴
OA |
OC |
DC |
BC |
∴Rt△AOC∽Rt△DCB,
∴∠ACO=∠DBC,
∵∠ACB=∠ACO+45°=∠DBC+∠E,
∴∠E=45°,
∵△EBM和△ABC相似,∠E=∠ABC=45°,
∴∠ACB=∠BME,
∴BM=BC,
设直线CA的解析式为:y=kx+b,
则
|
解得,
|
则直线CA的解析式为:y=3x+3,
设点M的坐标为(x,3x+3),
则(x-3)2+(3x+3)2=18,
解得,x1=0(舍去),x2=-
6 |
5 |
x2=-
6 |
5 |
3 |
5 |
∴点M的坐标为(-
6 |
5 |
作业帮用户
2017-11-13
![]() ![]() |
看了 如图,已知抛物线y=-x2+...的网友还看了以下:
反比例函数y=kx(k>1)和y=1x在第一象限内的图象如图所示,点P在y=kx的图象上,PC⊥x 2020-04-08 …
如图 已知 直线l∶y=-√3x÷3+√3交x轴于点A 交y轴于点B 将△AOB沿直线l翻折 点如 2020-05-16 …
已知直线y=-x+12交x轴于点A,交y轴于点B,点C(8,0)在x轴上,点D在直线y=-x+12 2020-06-23 …
已知:如图,直线y=−34x+3交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2 2020-06-23 …
如图,抛物线y=12x2-x-4与坐标轴相交于A、B、C三点,P是线段AB上一动点(端点除外),过 2020-07-14 …
如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABC 2020-07-19 …
(2012•道里区二模)如图,在平面直角坐标系内,点O为坐标原点,直线y=12x+3交x轴于点A, 2020-07-30 …
如图,已知函数y=-x+1的图像与x轴y轴分别交于CB两点,与双曲线y=k/x(k≠0)交与AD两 2020-08-03 …
如左图:直线y=kx+4k(k≠0)交x轴于点A,交y轴于点C,点M(2,m)为直线AC上一点,过点 2020-11-01 …
(2008•烟台)如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点.将抛物线L 2020-11-13 …