早教吧作业答案频道 -->数学-->
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,证明:f(x)在(0,+无穷)上是增函数这是我找到的过程:设x1,x2∈(0,+∞),x1<x2f(x1)-f(x2)=e^x1+1/e^x1-(e^x2+1/e^x2)=e^x1-e^x2+1/e^x1-1/e^x2=(e^x1-e^x2)(e^x1e^x2-1
题目详情
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,证明:f(x)在(0,+无穷)上是增函数
这是我找到的过程:
设 x1,x2∈(0,+∞),x1<x2
f(x1)-f(x2)=e^x1+1/e^x1-(e^x2+1/e^x2)=e^x1-e^x2+1/e^x1-1/e^x2=(e^x1-e^x2)(e^x1e^x2-1)/e^x1e^x2
x1,x2∈(0,+∞),e^x1e^x2-1>0,e^x1-e^x2<0
(e^x1-e^x2)(e^x1e^x2-1)/e^x1e^x2<0
f(x1)<f(x2)
f(x)在0到正无穷是增函数
但是有一步我看不懂:e^x1e^x2-1>0,这个为什么?
这是我找到的过程:
设 x1,x2∈(0,+∞),x1<x2
f(x1)-f(x2)=e^x1+1/e^x1-(e^x2+1/e^x2)=e^x1-e^x2+1/e^x1-1/e^x2=(e^x1-e^x2)(e^x1e^x2-1)/e^x1e^x2
x1,x2∈(0,+∞),e^x1e^x2-1>0,e^x1-e^x2<0
(e^x1-e^x2)(e^x1e^x2-1)/e^x1e^x2<0
f(x1)<f(x2)
f(x)在0到正无穷是增函数
但是有一步我看不懂:e^x1e^x2-1>0,这个为什么?
▼优质解答
答案和解析
但是有一步我看不懂:e^x1e^x2-1>0,这个为什么?求解释!
看来你应该复习一下指数函数,e>1, x1,x2∈(0,+∞),所以e^x1e^x2>1
看来你应该复习一下指数函数,e>1, x1,x2∈(0,+∞),所以e^x1e^x2>1
看了 设a>0,f(x)=e^x/...的网友还看了以下:
已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)为偶函数 则( ) A 2020-05-16 …
高中必修1函数题定义在R上的函数y=f(x),f(x)≠0.当x>0时,f(x)>1.且对于任意的 2020-06-02 …
已知函数f(x)为奇函数,x>0时为增函数且f(2)=0,则{x|f(x-2)>0}=()A.{x 2020-06-09 …
几道高中函数题(求详解)1.已知函数f(X)=ax²+bx+c满足f(1)=f(4),则()A.f 2020-07-05 …
已知定义在R上的奇函数f(x)满足:对于任意x∈R有f(x+1)=-f(x),对于任意0≤x1<x 2020-07-20 …
求函数f(x)=x³在(-∞,+∞)上是增函数设X①,X②是任意两个实数,且X①<X②,则X②-X 2020-07-31 …
设函数f(x)对于任意xy∈R都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f( 2020-08-03 …
1已知f(x)=3x^-x+4,f(g(x))=3x^4+18x^3+50x^+69x+48,那么 2020-08-03 …
设函数f(x)=(1+x)α的定义域是[-1,+∞),其中常数α>0.(1)若α>1,求y=f(x) 2020-12-08 …
若函数f(x)的图像是连续不断的,且f(0)>0,f(1)>0,f(2)<0,则加上哪个条件可确定f 2021-02-13 …