如图,四边形ABCD,AD与BC不平行,AB=CD.AC,BD为四边形ABCD的对角线.E,F,G,H分别是BD,BC,AC,AD的中点.下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG=12(BC-AD);⑤四边
如图,四边形ABCD,AD与BC不平行,AB=CD.AC,BD为四边形ABCD的对角线.E,F,G,H分别是BD,BC,AC,AD的中点.
下列结论:①EG⊥FH;
②四边形EFGH是矩形;
③HF平分∠EHG;
④EG=
(BC-AD);1 2
⑤四边形EFGH是菱形.
其中正确的个数是( )
A. 1个
B. 2个
C. 3个
D. 4个

∴EF是△BCD的中位线,
∴EF=
1 |
2 |
同理可得,GH=
1 |
2 |
1 |
2 |
1 |
2 |
又∵AB=CD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,故⑤正确,②错误,
∴EG⊥FH,HF平分∠EHG,故①、③正确,
如图所示,取AB的中点P,连接PE,PG,
∵E是BD的中点,G是AC的中点,
∴PE是△ABD的中位线,PG是△ABC的中位线,
∴PE=
1 |
2 |
1 |
2 |
∵AD与BC不平行,
∴PE与PG不平行,
∴△PEG中,EG>PG-PE,
∴EG>
1 |
2 |
1 |
2 |
1 |
2 |
综上所述,正确的有①③⑤.
故选:C.
在四边形ABCD中,AC与BD交于点O,直线EF分别交AB、BD、AC、DC于点E、G、H、F.( 2020-05-13 …
1.f(x)=2^x+3^x-2,则当x趋向0时,f(x)是x的A.高阶无穷小量B.低阶无穷小量C 2020-05-13 …
有三个函数f(x)=tan(x+pi/4),g(x)=(1+tanx)(1-tanx),h(x)= 2020-05-17 …
下表是元素周期表的一部分,表中所列字母分别代表一种化学元素。试回答下列问题:(1)IA族元素与f形 2020-05-17 …
1.已知f(x)是定义在R上的函数,设g(x)=[f(x)+f(-x)]/2,h(x)=[f(x) 2020-07-19 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
如何证明若函数f(x)与H(x)在数集A上有界,则函数f(x)+H(x),f(x)-H(x),f( 2020-07-31 …
在等腰梯形ABCD中,角A=45度,AD=4根号2,CD=2,E、F分别为腰AD、BC上的动点,EF 2020-11-27 …
在等腰梯形ABCD中,角A=45度,AD=4根号2,CD=2,E、F分别为腰AD、BC上的动点,EF 2020-11-27 …
测定H与F形成的化合物的相对分子质量,实验测的值一般高于理论值,其主要原因是什么? 2020-12-31 …