早教吧 育儿知识 作业答案 考试题库 百科 知识分享

定义在R上的函数f(x),其图象是连续不断的,如果存在非零常数λ(λ∈R),使得对任意的x∈R,都有f(x+λ)=λf(x),则称y=f(x)为“倍增函数”,λ为“倍增系数”,下列说法中正确

题目详情
定义在R上的函数f(x),其图象是连续不断的,如果存在非零常数λ(λ∈R),使得对任意的x∈R,都有f(x+λ)=λf(x),则称y=f(x)为“倍增函数”,λ为“倍增系数”,下列说法中正确的序号是______.
①若函数y=f(x)是倍增系数λ=-2的“倍增函数”,则y=f(x)至少有1个零点;
②函数f(x)=2x+1是“倍增函数”,且“倍增系数”λ=1;
③函数f(x)=logax(a>0且a≠1)不可能是“倍增函数”;
④函数f(x)=
e
−x
 
是“倍增函数”,且“倍增系数”λ∈(0,1).
▼优质解答
答案和解析
∵函数y=f(x)是倍增系数λ=-2的倍增函数,
∴f(x-2)=-2f(x),
当x=0时,f(-2)+2f(0)=0,
若f(0),f(-2)任一个为0,函数f(x)有零点.
若f(0),f(-2)均不为零,则f(0),f(-2)异号,
由零点存在定理,在(-2,0)区间存在x0,f(x0)=0,
即y=f(x)至少有1个零点,故①正确;
∵f(x)=2x+1是倍增函数,
∴2(x+λ)+1=λ(2x+1),
∴λ=
2x
2x−1
≠1,故②不正确;
∵f(x)=log2x的定义域不是R,
∴函数f(x)=logax(a>0且a≠1)不可能是“倍增函数”,故③正确;
∵f(x)=e-x是倍增函数,
∴e-(x+λ)=λe-x
1
exeλ
=
λ
ex

∴λ=
1
eλ
∈(0,1),故④正确.
故答案为:①③④