早教吧作业答案频道 -->数学-->
初二几何四边形——等腰三角形在等腰梯形ABCD中,AD平行BC,AB=DC,P为底边BC上一点,PE垂直AB,PE垂直CD,BG垂直CD(1)求证:PE+PF=BG(2)若P在BC的延长线上,则(1)中的结论是否成立?若成立给出证明,
题目详情
初二几何四边形——等腰三角形
在等腰梯形ABCD中,AD平行BC,AB=DC,P为底边BC上一点,PE垂直AB,PE垂直CD,BG垂直CD
(1)求证:PE+PF=BG
(2)若P在BC的延长线上,则(1)中的结论是否成立?若成立给出证明,不成立请说明PE、PF、BG的关系并证明
(3)若P在BC的反向延长线上,则PE、PF、BG之间的关系是怎样的

在等腰梯形ABCD中,AD平行BC,AB=DC,P为底边BC上一点,PE垂直AB,PE垂直CD,BG垂直CD
(1)求证:PE+PF=BG
(2)若P在BC的延长线上,则(1)中的结论是否成立?若成立给出证明,不成立请说明PE、PF、BG的关系并证明
(3)若P在BC的反向延长线上,则PE、PF、BG之间的关系是怎样的

▼优质解答
答案和解析
⑴过P点作BD的垂线,垂足为H点,则四边形PFGH是矩形,∴PF=HG,考察△直角BEP与直角△PHB,∠HPB=∠C=∠EBP,BP=PB,∴△BEP≌△PHB,∴PE=BH,∴PE+PF=BG.⑵P在BC的延长线上,作图:过C点作AB的垂线,垂足为G′,易证明BG=CG′,过C点作PE的垂线,垂足为H点,则四边形CHEG′是矩形,∴EH=G′C,∵G′C∥EP,∴∠BCG′=∠BPE,又BG∥PF,∴∠FPC=∠CBG而易证明∠GBC=∠G′CB,∴∠HPC=∠FPC,∴易证明直角△HPC≌直角△FPC,∴PF=PH,∴结论是:PE=PF+BG.⑶同理可证:PF=PE+BG
看了 初二几何四边形——等腰三角形...的网友还看了以下:
在△ABC中,角A,B,C的对边分别为a,b,c且A,B,C成等差数列 (1)若b=2√3,c=2 2020-05-15 …
平行四边形ABCD中,EF//AB,设AB=a,BC=b,若四边形AEFB、四边形EDCF都与四边 2020-05-21 …
在三角形ABC中,若三边a,b,c成等比数列,求公比q的范围若三边成等比数列,最小边为a,求三角形 2020-06-03 …
在△ABC中,a,b,c分别为角A,B,C所对的边,a,b,c成等差数列,且a=2c在△ABC中, 2020-06-04 …
如图1,△ABC为等边三角形,D为B上任一点,∠ADE=60°,边DE与∠ACB外角的平分线相交于 2020-06-15 …
把八边行分成多少三角形,八边行共有多少条对角线?若多边形的每个内角都等于144º,则它的边数是?把 2020-07-18 …
1.在三角形ABC中,LA=二分之一LB=三分之一LC,它的最长边为10cm,则此三角形得最短边为 2020-07-27 …
在三角形ABC中,角A,B,C所对边分别为a,b,c且tanA=1/2.(1)求tanC值(2)若 2020-07-30 …
三角形的三条边分别是a,b,c,若满足a+b=2c,那么这个三角形是什么三角形?三角形的三条边分别 2020-08-03 …
已知三角形ABC三个内角A,B,C的对边分别为a,b,c,且角A,B,C成等差数列,面积为根号3.( 2020-12-31 …