早教吧作业答案频道 -->数学-->
如图,E是四边形ABCD的对角线BD上的一点,且AB:AE=AC:AD,角LBAE=角CAD求证:角ABC=角LAED如图,△ABC内接于⊙O,AD为△ABC的高,AE为⊙O的直径求证:AD乘AE=AB乘AC如图,已只△ABC,△DEF均为正三角形,D,E分别在A
题目详情
如图,E是四边形ABCD的对角线BD上的一点,且AB:AE=AC:AD,角LBAE=角CAD 求证:角ABC=角LAED
如图,△ABC内接于⊙O,AD为△ABC的高,AE为⊙O的直径求证:AD乘AE=AB乘AC
如图,已只△ABC,△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并给出证明
如图,△ABC内接于⊙O,AD为△ABC的高,AE为⊙O的直径求证:AD乘AE=AB乘AC
如图,已只△ABC,△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并给出证明
▼优质解答
答案和解析
第一题:
因为角BAE=角CAD
所以角BAC=角EAD
又因为AB:AE=AC:AD
所以△ABC∽△EAD
所以角ABC=角AED
第二题:
连接BE,则直角三角形ABE和直角三角形ADC相似.
则:AB/AE=AD/AC
故:AB*AC=AD*AE
第三题:
三角形BDE与三角形FGH相似,证明如下:
角DEB+角HEC=120度
角HEC+角EHC=120度
故:角DEB=角EHC=角FHG 又:角B=角F=60度
故:三角形BDE与三角形FGH相似
因为角BAE=角CAD
所以角BAC=角EAD
又因为AB:AE=AC:AD
所以△ABC∽△EAD
所以角ABC=角AED
第二题:
连接BE,则直角三角形ABE和直角三角形ADC相似.
则:AB/AE=AD/AC
故:AB*AC=AD*AE
第三题:
三角形BDE与三角形FGH相似,证明如下:
角DEB+角HEC=120度
角HEC+角EHC=120度
故:角DEB=角EHC=角FHG 又:角B=角F=60度
故:三角形BDE与三角形FGH相似
看了 如图,E是四边形ABCD的对...的网友还看了以下:
初中化学A+B等于C+D C+D等于A+B ABCD可能是什么 2020-05-16 …
( )3.设一个栈的输入序列为A,B,C,D,则借助一个栈所得到的输出序列不可能是_______. 2020-05-17 …
化简逻辑函数求大神1,化简逻辑函数Y=Aˊ(CDˊ+CˊD)+BCˊD+ACˊD+AˊCDˊY=A 2020-06-12 …
下列卤化物在浓的KOH醇溶液中脱卤化氢的反应速度最快的是?选项为:a)1-溴戊烷b)2-溴戊烷c) 2020-06-28 …
设一数列a,b,c,d,e,f,通过栈结构不可能不可能排成的顺序数列为()A)c,b,e,f,d, 2020-06-28 …
以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=42,|DE|= 2020-07-22 …
如图所示,某公路(可视为x轴)的同一侧有A、B、C三个村庄,要在公路边建一货栈D,向A、B、C三个村 2020-11-05 …
如图,某公路(可视为x轴)的同一侧有A、B、C三个村庄,要在公路边建一货栈D,向A、B、C三个村庄送 2020-11-05 …
有一个机械装置,叫做“滚珠实力放大器,其原理,斜面A可以在光滑水平面上滑动,斜面B以及物块C都是被固 2020-12-01 …
关于化学平衡常数和浓度积的问题化学平衡常数:c^p(C)*c^q(D)/C^m(A)*c^n(B)浓 2021-01-22 …