早教吧作业答案频道 -->其他-->
在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB上一点,AE=AD,且BF∥CD,AF⊥CE于F.连接DE交对角线AC于H.下列结论:①△ACD≌△ACE;②AC垂直平分ED;③CE=2BF;④CE平分∠ACB.其中结论正确的是
题目详情
在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB上一点,AE=AD,且BF∥CD,AF⊥CE于F.连接DE交对角线AC于H.下列结论:①△ACD≌△ACE;②AC垂直平分ED;③CE=2BF;④CE平分∠ACB.其中结论正确的是( )A.①②
B.①②④
C.①②③
D.①②③④
▼优质解答
答案和解析
∵AD∥BC,∠ABC=90°,
∴∠BAD=90°.
∵AB=CB,
∴∠BAC=45°,
∴∠DAC=45°.
又∵AC=AC,
∴△AEC≌△ADC.
∴①△ACD≌△ACE正确.
∵△AEC≌△ADC,
∴DC=CE.
又∵AD=AE,
∴AC是DE的垂直平分线.
即AC垂直平分ED.
∴②AC垂直平分ED正确.
易证F、A、B、C共圆,
因为BC为弦,∠CFB=CAB=45°,FB∥CD,
所以∠FCD=45°,∠ACE=∠ACD=22.5°,
又因为∠ACB=45°,
所以∠FCB等于22.5,
故④正确;
延长DA,交BF延长线于M,
易证MBCD是平行四边形,对
角相等,所以∠M=67.5°,
易证∠FAB=∠FCB(以FB为弦,亦可以用8字结构,相似),
所以∠FAE=22.5°,
所以∠MAF=67.5°,
所以∠M=∠MAF,
故AF=MF,
易证∠EBF=22.5°,
所以∠FAB=∠FBA,
所以AF=FB,
所以MF=BF,
又因为MB=CD=CE(对边以及全等),
所以2FB=CE④∵∠ABC=90°,OE=OC,
∴BO=CO=
CE
∴∠OCB=∠OBC.
∵∠FOB=∠OCB+∠OBC,
∴∠FOB=2∠OCB.
∵BF∥CD,
∴∠BFO=∠DCF.
∵∠BFO=∠DCF=∠FOB,
∴∠BFO=∠FOB.
∴BF=OB.
∴BF=
CE,
即CE=2BF,故③正确.
故答案选D.
∵AD∥BC,∠ABC=90°,∴∠BAD=90°.
∵AB=CB,
∴∠BAC=45°,
∴∠DAC=45°.
又∵AC=AC,
∴△AEC≌△ADC.
∴①△ACD≌△ACE正确.
∵△AEC≌△ADC,
∴DC=CE.
又∵AD=AE,
∴AC是DE的垂直平分线.
即AC垂直平分ED.
∴②AC垂直平分ED正确.
易证F、A、B、C共圆,
因为BC为弦,∠CFB=CAB=45°,FB∥CD,
所以∠FCD=45°,∠ACE=∠ACD=22.5°,
又因为∠ACB=45°,
所以∠FCB等于22.5,
故④正确;
延长DA,交BF延长线于M,易证MBCD是平行四边形,对
角相等,所以∠M=67.5°,
易证∠FAB=∠FCB(以FB为弦,亦可以用8字结构,相似),
所以∠FAE=22.5°,
所以∠MAF=67.5°,
所以∠M=∠MAF,
故AF=MF,
易证∠EBF=22.5°,
所以∠FAB=∠FBA,
所以AF=FB,
所以MF=BF,
又因为MB=CD=CE(对边以及全等),
所以2FB=CE④∵∠ABC=90°,OE=OC,
∴BO=CO=
| 1 |
| 2 |
∴∠OCB=∠OBC.
∵∠FOB=∠OCB+∠OBC,
∴∠FOB=2∠OCB.
∵BF∥CD,
∴∠BFO=∠DCF.
∵∠BFO=∠DCF=∠FOB,
∴∠BFO=∠FOB.
∴BF=OB.
∴BF=
| 1 |
| 2 |
即CE=2BF,故③正确.
故答案选D.
看了 在四边形ABCD中,AD∥B...的网友还看了以下:
关于E=Fq和E=KQr2两个公式,下列说法中正确的是()A.E=Fq中的场强E是电荷q产生的B. 2020-05-13 …
1.若O(20°N,90°E)为太阳直射点,弧线EP、FP分别为晨线和昏线的一段,则 ( ) A. 2020-05-17 …
读等高线地形图(单位:米),关于图示说法正确的是()。A.在E点可以观察到车站NB.铁路沿线要注意 2020-06-24 …
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则()A.E-A不可逆,E+A不可逆B.E-A不 2020-07-22 …
已知随机变量X的数学期望E(X)存在,则下列等式中不恒成立的是()已知随机变量X的数学期望E(X) 2020-07-25 …
已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l相切.设动圆圆心 2020-07-25 …
设函数f(x)=ex+2x-a(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0,y 2020-07-26 …
(2011•六盘水)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“ 2020-08-01 …
(2013•四川)设函数f(x)=ex+x−a(a∈R,e为自然对数的底数).若存在b∈[0,1] 2020-08-02 …
已知向量a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则[]A.a⊥eB.a⊥(a 2020-11-02 …