早教吧作业答案频道 -->其他-->
如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)求证:AB∥CD;(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定
题目详情
如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)求证:AB∥CD;
(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并证明;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论,不需说明理由.

(1)求证:AB∥CD;
(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并证明;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论,不需说明理由.

▼优质解答
答案和解析
证明:(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180,
∴AB∥CD;
(2)∠BAE+
∠MCD=90°;
过E作EF∥AB,
∵AB∥CD,
∴EF∥∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+
∠MCD=90°;
(3)如图3:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC;
如图4:∵AB∥CD,
∴∠BAC=∠ACQ
∵∠PQC+∠PCQ+∠ACQ=180°,
∴∠PQC+∠QPC+∠BAC=180°.
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180,
∴AB∥CD;
(2)∠BAE+
| 1 |
| 2 |
过E作EF∥AB,
∵AB∥CD,
∴EF∥∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,

∵∠MCE=∠ECD,
∴∠BAE+
| 1 |
| 2 |
(3)如图3:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC;
如图4:∵AB∥CD,
∴∠BAC=∠ACQ
∵∠PQC+∠PCQ+∠ACQ=180°,
∴∠PQC+∠QPC+∠BAC=180°.
看了 如图1,CE平分∠ACD,A...的网友还看了以下:
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
1.(a^2+3)(a-2)-a(a^2-2a-2)=?2.(3/5a^5b^3+9/5a^7b^ 2020-04-27 …
9倍数的连续数字和为什么都等于9?例如:9的2倍是18,1加8等于9;9的11倍是99,9加9等于 2020-06-02 …
一、已知数集M满足条件:若a∈M,则(1+a)/(1-a)∈M(a≠0,a≠±1)(1)若3∈M, 2020-07-30 …
若非空集合A={x|2a+1≤x≤3a-5},B={3≤x≤22},则使A∈(A∩B)成立的所有a 2020-08-01 …
在算式9分之5÷a(a不等于零)中,当a()时,商大于9分之5当a()是,商小于9分之5当a在算式9 2020-12-17 …
24.以下符合C语言语法的赋值表达式是()。A.a=9+b+c=d+924.以下符合C语言语法的赋值 2020-12-31 …
c若有变量说明:inta=0,b=0,c=0;,以下符合C语言语法的赋值表达式是:A.a=9+b+c 2020-12-31 …
函数f[x]=logaXa大于0,且a不等于1,在2,3上最大值为1,则a=当a大于1时,f(x)图 2021-01-15 …
如果a、b是有理数,则下列各式子成立的是()A.如果a<0,b<0,那么a+b>0B.如果a>0,b 2021-02-02 …