早教吧作业答案频道 -->其他-->
如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)求证:AB∥CD;(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定
题目详情
如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)求证:AB∥CD;
(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并证明;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论,不需说明理由.

(1)求证:AB∥CD;
(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并证明;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论,不需说明理由.

▼优质解答
答案和解析
证明:(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180,
∴AB∥CD;
(2)∠BAE+
∠MCD=90°;
过E作EF∥AB,
∵AB∥CD,
∴EF∥∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+
∠MCD=90°;
(3)如图3:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC;
如图4:∵AB∥CD,
∴∠BAC=∠ACQ
∵∠PQC+∠PCQ+∠ACQ=180°,
∴∠PQC+∠QPC+∠BAC=180°.
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180,
∴AB∥CD;
(2)∠BAE+
1 |
2 |
过E作EF∥AB,
∵AB∥CD,
∴EF∥∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,

∵∠MCE=∠ECD,
∴∠BAE+
1 |
2 |
(3)如图3:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC;
如图4:∵AB∥CD,
∴∠BAC=∠ACQ
∵∠PQC+∠PCQ+∠ACQ=180°,
∴∠PQC+∠QPC+∠BAC=180°.
看了 如图1,CE平分∠ACD,A...的网友还看了以下:
一道全等三角形的解答过程已知:△ABC为等边三角形,M是延长线上一点,直角三角尺的一条直角边经过点 2020-05-21 …
怎么得出相似?我看读懂.M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B,且DM交AC 2020-06-15 …
重组字母为单词e,e,r,w,he,e,r,t,he,e,se,a,sw,m,s,ir,t,p,i 2020-07-09 …
设定圆(x+根号3)^2+y^2=16,动圆N过点F(根号3,0)且与圆M相切,记圆心N的轨迹为E 2020-07-26 …
如果除去几何的概念,能否用级数自然地定义圆周率.我们首先可以定义函数e^z=1+z+z^2/2!+ 2020-07-31 …
相似三角形的对应顶点的字母一定要写在对应位置上吗?反过来,已知三角形ABC相似于三角形DEF,那么 2020-08-01 …
已知点M(m,2),N(-3,n)根据以下要求确定m,n的值.MN两点在第二,四象限的角平分线上已 2020-08-03 …
1已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x(x>0)(1)若g(x) 2020-10-31 …
如图所示,在界限MN左上方空间存在斜向左下方与水平方向夹角为45°的匀强磁场,场强大小E=2×105 2020-11-26 …
读110°E经线M城市正午太阳高度角的年内变化图,该地冬至日和夏至日的正午太阳高度角相差40°,回答 2020-12-19 …