早教吧作业答案频道 -->其他-->
如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)求证:AB∥CD;(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定
题目详情
如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)求证:AB∥CD;
(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并证明;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论,不需说明理由.

(1)求证:AB∥CD;
(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并证明;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论,不需说明理由.

▼优质解答
答案和解析
证明:(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180,
∴AB∥CD;
(2)∠BAE+
∠MCD=90°;
过E作EF∥AB,
∵AB∥CD,
∴EF∥∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+
∠MCD=90°;
(3)如图3:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC;
如图4:∵AB∥CD,
∴∠BAC=∠ACQ
∵∠PQC+∠PCQ+∠ACQ=180°,
∴∠PQC+∠QPC+∠BAC=180°.
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180,
∴AB∥CD;
(2)∠BAE+
1 |
2 |
过E作EF∥AB,
∵AB∥CD,
∴EF∥∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,

∵∠MCE=∠ECD,
∴∠BAE+
1 |
2 |
(3)如图3:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC;
如图4:∵AB∥CD,
∴∠BAC=∠ACQ
∵∠PQC+∠PCQ+∠ACQ=180°,
∴∠PQC+∠QPC+∠BAC=180°.
看了 如图1,CE平分∠ACD,A...的网友还看了以下:
如图在三角形ABC中,D是BC上一点,E是AC上一点,且满足AD=AB,角ADE=角C1,如图在三 2020-05-15 …
如图,在三角形ABC中,角C等于2角B,D是BC上的一点,且AD垂直AB,点E是BD的中点,连接E 2020-06-27 …
如图.点E,F在BC上,BE等于CF,AB等于DC,角B等于角C.求证角A等于角C.根据概念(S如 2020-06-27 …
在圆O上任意一点C,以C点为圆心作圆与圆O的直径AB相切于点D,两圆相交于E,F两点,求证:EF平 2020-06-30 …
如图正方体ABCD-A1B1C1D1中,EF分别是AB和AA1的中点,求证E,C,D1,F四面共点 2020-07-09 …
点C是半圆O半径OB上动点,做PC垂直AB于C,D是半圆上位于PC左侧的点,连结BD交PC于E点C 2020-07-17 …
如图,在梯形ABCD中,AB平行于DC,DB平分角ADC,过点A作AE平行BD,交CD的延长线于点 2020-07-22 …
如何求证C,D,E,F四点共圆.以知:圆1与圆2相交与点A,B,点P在BA的延长线上,割线PCD交 2020-07-31 …
初中的一道几何证明题等腰梯形,左上角A点,右上角B点,左下角C点,左下角D点,底边CD点上有一点E, 2020-10-31 …
如图,在矩形ABCD中,AB=4,BC=2,点E是边CD上任意一点(点E与点C、D不重合),过点A作 2020-11-03 …