早教吧作业答案频道 -->数学-->
如图,△ABC是等腰三角形,AB=AC,AD是角平分线,以AC为边向外作等边三角形ACE,BE分别与AD、AC交于点F、G,连接CF.(1)求证:∠FBD=∠FCD;(2)若AF=3,DF=1,求EF的值.
题目详情
如图,△ABC是等腰三角形,AB=AC,AD是角平分线,以AC为边向外作等边三角形ACE,BE分别与AD、AC交于点F、G,连接CF.

(1)求证:∠FBD=∠FCD;
(2)若AF=3,DF=1,求EF的值.

(1)求证:∠FBD=∠FCD;
(2)若AF=3,DF=1,求EF的值.
▼优质解答
答案和解析
(1)证明:∵△ABC是等腰三角形,AB=AC,AD是角平分线,
∴AD垂直平分BC,
∴FB=FC,
∴∠FBD=∠FCD;
(2)过A作AH⊥BE于H点,如图,
∵AB=AC,
∴∠ABC=∠ACB,BH=EH,
∴∠ABF=∠ACF,
∵△ACE为等边三角形,
∴AC=AE,∠EAC=60°,
∵AB=AC,
∴AB=AE,
∴∠ABE=∠AEB,
∴∠ACF=∠AEG,
∴∠GFC=∠EAG=60°,
而∠GFC=∠FBC+∠FCD,
∴∠FBC=30°,
∴BF=2FD=2,BD=
FD=
,
设FH=x,
在Rt△ABD中,AB2=AD2+BD2=16+3=19,
在Rt△ABH中,AB2=AH2+BH2=AH2+(x+2)2,
在Rt△AFH中,AH2=AF2-FH2=9-x2,
∴19=9-x2+(x+2)2,解得x=
,
∴BH=BF+FH=2+
=3.5,
∴BE=2BH=7,
∴EF=BE-BF=7-2=5.

∴AD垂直平分BC,
∴FB=FC,
∴∠FBD=∠FCD;
(2)过A作AH⊥BE于H点,如图,
∵AB=AC,
∴∠ABC=∠ACB,BH=EH,
∴∠ABF=∠ACF,
∵△ACE为等边三角形,
∴AC=AE,∠EAC=60°,
∵AB=AC,
∴AB=AE,
∴∠ABE=∠AEB,
∴∠ACF=∠AEG,
∴∠GFC=∠EAG=60°,
而∠GFC=∠FBC+∠FCD,
∴∠FBC=30°,
∴BF=2FD=2,BD=
3 |
3 |
设FH=x,
在Rt△ABD中,AB2=AD2+BD2=16+3=19,
在Rt△ABH中,AB2=AH2+BH2=AH2+(x+2)2,
在Rt△AFH中,AH2=AF2-FH2=9-x2,
∴19=9-x2+(x+2)2,解得x=
3 |
2 |
∴BH=BF+FH=2+
3 |
2 |
∴BE=2BH=7,
∴EF=BE-BF=7-2=5.
看了 如图,△ABC是等腰三角形,...的网友还看了以下:
已知a≠b,且a²/(ab+b²)-b²/(ab+a²)=0,求证:1/a+1/b=1(a+b) 2020-04-06 …
命题:“若空间两条直线a,b分别垂直平面α,则a∥b”学生小夏这样证明:设a,b与面α分别相交于A 2020-05-13 …
概率基本公式歧义性,我用'符号表示非A,B为两个事件,求恰好有一个发生的概率.P(AB'∪A'B) 2020-05-13 …
3道简答题!已知:m*m=m+1,n*n=n+1,且m不等于n.求m5次方加n5次方的值.已知3a 2020-06-07 …
已知非0实数a,b满足ab=a-b,求a/b+b/a-ab的值 2020-06-12 …
线性代数1.设A,B为n阶对称阵且B可逆,则下列矩阵中为对称阵的是()a:AB^(-1)-B^(- 2020-06-18 …
一个基因型为AaBB的精原细胞,在减数分裂过程中,由于染色体分配紊乱,产生了一个AAaB的精细胞, 2020-06-29 …
1.求逆序数N(n12…(n-1))个人觉得答案是n-1啊.2.A,B,C为n阶方阵,则下列各式正 2020-07-19 …
a的绝对值+b的绝对值=a+b的绝对值,则a、b的关系是:()A.ab的绝对值相等a、b异号A.a 2020-07-30 …
一道选择题不会做如果b-a=-6,ab=7则a平方-a²-ab²的值是A.42B.-42C.13D 2020-08-04 …