早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在△ABC中,AB=AC,D是△ABC的外心,连接AD、CD.将△ADC绕点A顺时针旋转到△AEB,连接ED.(1)求证:△AED∽△ABC;(2)连接BD,判断四边形AEBD的形状并证明.

题目详情
如图,在△ABC中,AB=AC,D是△ABC的外心,连接AD、CD.将△ADC绕点A顺时针旋转到△AEB,连接ED.
作业帮
(1)求证:△AED∽△ABC;
(2)连接BD,判断四边形AEBD的形状并证明.
▼优质解答
答案和解析
证明:(1)∵△ADC 绕点A顺时针旋转得到△AEB,
∴△ADC≌△AEB.
∴∠BAE=∠CAD,AE=AD.
∴∠DAE=∠CAB.
∵AB=AC,
AE
AB
=
AD
AC

∴△AED∽△ABC.
(2)四边形AEBD是菱形.
∵D是△ABC的外心,
∴DB=DA=DC.
又∵△ADC≌△AEB,
∴AE=AD,BE=DC.
∴DB=DA=BE=AE.
∴四边形AEBD是菱形.