早教吧作业答案频道 -->数学-->
如图,在矩形ABCD中,已知AB=2,BC=3,点E为AD边上一动点(不与A、D重合),连接CE,作EF⊥CE交AB边于F(1)求证:△AEF∽△DCE;(2)当△ECF∽△AEF时,求AF的长;(3)在点E的运动过程中,AD
题目详情
如图,在矩形ABCD中,已知AB=2,BC=3,点E为AD边上一动点(不与A、D重合),连接CE,作EF⊥CE交AB边于F

(1)求证:△AEF∽△DCE;
(2)当△ECF∽△AEF时,求AF的长;
(3)在点E的运动过程中,AD边上是否存在异于点E的点G,使△AGF∽△DCG成立?若存在,请猜想点G的位置,并给出证明;若不存在,请说明理由.

(1)求证:△AEF∽△DCE;
(2)当△ECF∽△AEF时,求AF的长;
(3)在点E的运动过程中,AD边上是否存在异于点E的点G,使△AGF∽△DCG成立?若存在,请猜想点G的位置,并给出证明;若不存在,请说明理由.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD为矩形,
∴∠A=∠D=90°,
∴∠AEF+∠AFE=90°
又∵EF⊥CE,
∴∠AEF+∠CED=90°,
∴∠AFE=∠CED,
∴△AEF∽△DCE;
(2)∵△AEF∽△DCE,
∴AF:ED=EF:CE,
又∵△ECF∽△AEF,
∴EF:AF=CE:AE,即AF:AE=EF:CE,
∴AE=ED,
而AD=BC=3,
∴AE=ED=
,
又∵△AEF∽△DCE,AB=DC=2,
∴AF:DE=AE:DC,即AF:
=
:2,
∴AF=
;
(3)猜想:①当AE=DE,点G不存在;
②当AE≠DE,存在点G且AG=DE.证明如下:
如图,
∵△AEF∽△DCE,
∴AF:DE=AE:DC,
∵AG=DE,
∴DG=AE,
∴AF:AG=DG:DC,
而∠A=∠D=90°,
∴△AGF∽△DCG.

∴∠A=∠D=90°,
∴∠AEF+∠AFE=90°
又∵EF⊥CE,
∴∠AEF+∠CED=90°,
∴∠AFE=∠CED,
∴△AEF∽△DCE;
(2)∵△AEF∽△DCE,
∴AF:ED=EF:CE,
又∵△ECF∽△AEF,
∴EF:AF=CE:AE,即AF:AE=EF:CE,
∴AE=ED,
而AD=BC=3,
∴AE=ED=
3 |
2 |
又∵△AEF∽△DCE,AB=DC=2,
∴AF:DE=AE:DC,即AF:
3 |
2 |
3 |
2 |
∴AF=
9 |
8 |
(3)猜想:①当AE=DE,点G不存在;
②当AE≠DE,存在点G且AG=DE.证明如下:
如图,
∵△AEF∽△DCE,
∴AF:DE=AE:DC,
∵AG=DE,
∴DG=AE,
∴AF:AG=DG:DC,
而∠A=∠D=90°,
∴△AGF∽△DCG.
看了 如图,在矩形ABCD中,已知...的网友还看了以下:
已知集合E={x||x-1|≥m},F={x|10/x+6>1}(1)若m=3,求E交F.(2)若E 2020-03-30 …
已知椭圆E的焦点在X轴上,焦距为2√3,离心率为√3/2已知点A(0,1)和直线l;y=x+m,线 2020-05-15 …
limx->0(e^x+e^2+e^3)/3lim(x~0)((e^x+e^2x+e^3x)/3) 2020-05-17 …
已知函数f(x)=ex+e-x,其中e是自然对数的底数.(1)判断并证明f(x)的奇偶性;(2)若 2020-08-01 …
高一数学1.设集合E={xllsinxl=1/2.x€(-哌/3,4哌/3)}则E真子集的个数为? 2020-08-01 …
如图,已知AD⊥BC,EG⊥BC,若∠E=∠3.则AD平分∠BAC.(填空)证明:∵AD⊥BC,E 2020-08-02 …
1.N(u,o2),u,o2未知,(X1,X2)为e的样本,则可以成为统计量的是()A)X1+uB) 2020-10-31 …
maple不等方程组solve({-(-u^3/3-e*u^2/2+u)>-(e^2+4)^(3/2 2020-10-31 …
矩阵的选择题单项选择:单项选择题已知A为n阶方阵,E为n阶单位阵,且(A-E)^2=3(A+E)^2 2020-11-03 …
1.如图1,已知角ABC=45度,P为角ABC内部一点,PE//AB,PF//BC,分别交BC.BA 2020-11-03 …