早教吧作业答案频道 -->数学-->
(2014•密云县二模)已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC(1)发现:如图1,当点E在AB上且点C和点D重合时,若点M、N分别是DB、EC的中点,则MN与EC的位置关系是,MN与EC
题目详情
(2014•密云县二模)已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC

(1)发现:如图1,当点E在AB上且点C和点D重合时,若点M、N分别是DB、EC的中点,则MN与EC的位置关系是______,MN与EC的数量关系是
(2)探究:若把(1)小题中的△AED绕点A旋转一定角度,如图2所示,连接BD和EC,并连接DB、EC的中点M、N,则MN与EC的位置关系和数量关系仍然能成立吗?若成立,请以逆时针旋转45°得到的图形(图3)为例给予证明位置关系成立,以顺时针旋转45°得到的图形(图4)为例给予证明数量关系成立,若不成立,请说明理由.

(1)发现:如图1,当点E在AB上且点C和点D重合时,若点M、N分别是DB、EC的中点,则MN与EC的位置关系是______,MN与EC的数量关系是
MN=
EC
| 1 |
| 2 |
MN=
EC
| 1 |
| 2 |
(2)探究:若把(1)小题中的△AED绕点A旋转一定角度,如图2所示,连接BD和EC,并连接DB、EC的中点M、N,则MN与EC的位置关系和数量关系仍然能成立吗?若成立,请以逆时针旋转45°得到的图形(图3)为例给予证明位置关系成立,以顺时针旋转45°得到的图形(图4)为例给予证明数量关系成立,若不成立,请说明理由.
▼优质解答
答案和解析
(1)MN⊥EC,MN=
EC;
理由:∵当点E在AB上且点C和点D重合时,点M、N分别是DB、EC的中点,
∴MN是三角形BED的中位线,
∴MN
BE,
∵等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC,
∴BE=DE,∠AED=90°,
∴MN与EC的位置关系是:MN⊥EC,MN与EC的数量关系是:MN=
EC.
故答案为:MN⊥EC,MN=
EC;
(2)MN⊥EC,MN=
EC;
理由:如图3,连接EM并延长到F,使EM=MF,连接CM、CF、BF.
在△EDM和△FBM中,
,
∴△EDM≌△FBM(SAS),
∴BF=DE=AE,∠FBM=∠EDM=135°,
∴∠FBC=∠EAC=90°,
在△EAC和△FBC中,
,
∴△EAC≌△FBC(SAS),
∴FC=EC,∠FCB=∠ECA,
∴∠ECF=∠FCB+∠BCE=∠ECA+∠BCE=90°,
∴EC⊥FC,
又∵点M、N分别是EF、EC的中点,
∴MN∥FC,
∴MN⊥EC,
如图4,连接EM并延长交BC于F,
∵∠AED=∠ACB=90°,
∴DE∥BC,
∴∠DEM=∠BFM,∠EDM=∠MBF,
在△EDM和△FBM中,
| 1 |
| 2 |
理由:∵当点E在AB上且点C和点D重合时,点M、N分别是DB、EC的中点,
∴MN是三角形BED的中位线,
∴MN
| ∥ |
. |
| 1 |
| 2 |
∵等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC,
∴BE=DE,∠AED=90°,
∴MN与EC的位置关系是:MN⊥EC,MN与EC的数量关系是:MN=
| 1 |
| 2 |
故答案为:MN⊥EC,MN=
| 1 |
| 2 |
(2)MN⊥EC,MN=
| 1 |
| 2 |
理由:如图3,连接EM并延长到F,使EM=MF,连接CM、CF、BF.
在△EDM和△FBM中,
|
∴△EDM≌△FBM(SAS),

∴BF=DE=AE,∠FBM=∠EDM=135°,
∴∠FBC=∠EAC=90°,
在△EAC和△FBC中,
|
∴△EAC≌△FBC(SAS),
∴FC=EC,∠FCB=∠ECA,
∴∠ECF=∠FCB+∠BCE=∠ECA+∠BCE=90°,
∴EC⊥FC,
又∵点M、N分别是EF、EC的中点,
∴MN∥FC,
∴MN⊥EC,
如图4,连接EM并延长交BC于F,
∵∠AED=∠ACB=90°,
∴DE∥BC,
∴∠DEM=∠BFM,∠EDM=∠MBF,
在△EDM和△FBM中,
作业帮用户
2016-12-13
![]() |
看了 (2014•密云县二模)已知...的网友还看了以下:
1.已知x=3是方程3[(3分之x+1)+4分之m(x-1)]=2的解,n满足关系式丨2n+m丨= 2020-05-20 …
[20分][高一不等式]已知a,b,m,n∈R+,设p=Sqrt(ab)+Sqrt(cd),q=S 2020-05-23 …
已知(a^n·b^m·b)^3=a^19·b^15,那么m、n的值分别是?3Q题中a^n指的是a的 2020-06-03 …
数列{an}和{bn}的前n项和分别记为An和Bn,已知an=-n-3/2,4Bn-12An=13 2020-06-06 …
2011吴江高一新生生活指南的几个题不会、求高人解答分解因式:(m²-n²)x²+m²x+n²x+ 2020-06-11 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
已知两个等差数列{an}与{bn},它的前n项和分别为Sn、S”n,已知Sn/S'n=n+3/n+ 2020-07-09 …
问几道关于新指令下的计算应用题.(1)设a,b两个数,指令:a⊕b=4乘a-(a+b)÷2.求15 2020-07-16 …
1.已知三个质数a,b,c满足a+b+c+abc=99,那么("[]'表示绝对值符号)[a-b]+ 2020-08-01 …
3道初二数学题(关于分式的)1.已知n分之m等于3分之5,求(m+n)分之m加上(m-n)分之m再减 2020-12-17 …
扫描下载二维码