早教吧作业答案频道 -->其他-->
(2014•深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,-4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线A
题目详情

(1)求抛物线的解析式;
(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,
①求当△BEF与△BAO相似时,E点坐标;
②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.
▼优质解答
答案和解析
(1)直线AB的解析式为y=2x+4,
令x=0,得y=4;令y=0,得x=-2.
∴A(-2,0)、B(0,4).
∵抛物线的顶点为点A(-2,0),
∴设抛物线的解析式为:y=a(x+2)2,
点C(0,-4)在抛物线上,代入上式得:-4=4a,解得a=-1,
∴抛物线的解析式为y=-(x+2)2.
(2)平移过程中,设点E的坐标为(m,2m+4),
则平移后抛物线的解析式为:y=-(x-m)2+2m+4,
∴F(0,-m2+2m+4).
①∵点E为顶点,∴∠BEF≥90°,
∴若△BEF与△BAO相似,只能是点E作为直角顶点,
∴△BAO∽△BFE,
∴
=
,即
=
,可得:BE=2EF.
如答图2-1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).

∵B(0,4),H(0,2m+4),F(0,-m2+2m+4),
∴BH=|2m|,FH=|-m2|.
在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,
又∵BE=2EF,∴BH=4FH,
即:4|-m2|=|2m|.
若-4m2=2m,解得m=-
或m=0(与点B重合,舍去);
若-4m2=-2m,解得m=
或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.
∴m=-
,
∴E(-
,3).
②假设存在.
联立抛物线:y=-(x+2)2与直线AB:y=2x+4,可求得:D(-4,-4),
∴S△ACD=
×4×4=8.
∵S△EFG与S△ACD存在8倍的关系,
∴S△EFG=64或S△EFG=1.
联立平移抛物线:y=-(x-m)2+2m+4与直线AB:y=2x+4,可求得:G(m-2,2m).
∴点E与点G横坐标相差2,即:|xG|-|xE|=2.

如答图2-2,S△EFG=S△BFG-S△BEF=
BF•|xG|-
BF|xE|=
BF•(|xG|-|xE|)=BF.
∵B(0,4),F(0,-m2+2m+4),∴BF=|-m2+2m|.
∴|-m2+2m|=64或|-m2+2m|=1,
∴-m2+2m可取值为:64、-64、1、-1.
当取值为64时,一元二次方程-m2+2m=64无解,故-m2+2m≠64.
∴-m2+2m可取值为:-64、1、-1.
∵F(0,-m2+2m+4),
∴F坐标为:(0,-60)、(0,3)、(0,5).
综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,-60)、(0,3)、(0,5).
令x=0,得y=4;令y=0,得x=-2.
∴A(-2,0)、B(0,4).
∵抛物线的顶点为点A(-2,0),
∴设抛物线的解析式为:y=a(x+2)2,
点C(0,-4)在抛物线上,代入上式得:-4=4a,解得a=-1,
∴抛物线的解析式为y=-(x+2)2.
(2)平移过程中,设点E的坐标为(m,2m+4),
则平移后抛物线的解析式为:y=-(x-m)2+2m+4,
∴F(0,-m2+2m+4).
①∵点E为顶点,∴∠BEF≥90°,
∴若△BEF与△BAO相似,只能是点E作为直角顶点,
∴△BAO∽△BFE,
∴
OA |
EF |
OB |
BE |
2 |
EF |
4 |
BE |
如答图2-1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).

∵B(0,4),H(0,2m+4),F(0,-m2+2m+4),
∴BH=|2m|,FH=|-m2|.
在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,
又∵BE=2EF,∴BH=4FH,
即:4|-m2|=|2m|.
若-4m2=2m,解得m=-
1 |
2 |
若-4m2=-2m,解得m=
1 |
2 |
∴m=-
1 |
2 |
∴E(-
1 |
2 |
②假设存在.
联立抛物线:y=-(x+2)2与直线AB:y=2x+4,可求得:D(-4,-4),
∴S△ACD=
1 |
2 |
∵S△EFG与S△ACD存在8倍的关系,
∴S△EFG=64或S△EFG=1.
联立平移抛物线:y=-(x-m)2+2m+4与直线AB:y=2x+4,可求得:G(m-2,2m).
∴点E与点G横坐标相差2,即:|xG|-|xE|=2.

如答图2-2,S△EFG=S△BFG-S△BEF=
1 |
2 |
1 |
2 |
1 |
2 |
∵B(0,4),F(0,-m2+2m+4),∴BF=|-m2+2m|.
∴|-m2+2m|=64或|-m2+2m|=1,
∴-m2+2m可取值为:64、-64、1、-1.
当取值为64时,一元二次方程-m2+2m=64无解,故-m2+2m≠64.
∴-m2+2m可取值为:-64、1、-1.
∵F(0,-m2+2m+4),
∴F坐标为:(0,-60)、(0,3)、(0,5).
综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,-60)、(0,3)、(0,5).
看了 (2014•深圳)如图,直线...的网友还看了以下:
集合22222的题目,1.设集合A={1},C={x|x(x−1)(x+1)=0},则满足A⊂≠B 2020-04-09 …
1、已知a,b,c互不相等求2a-b-c/(a-b)(b-c)+2b-c-a/(b-c)(b-a) 2020-05-16 …
A,B,C,X均为中学化学常见物质,一定条件下他们有如图转化关系(图发不了大致是A+X=C,A+X 2020-05-16 …
1.已知x>=y>=z>0,求证(yx^2)/z+(zy^2)/x+(xz^2)/y>=x^2+y 2020-06-11 …
设实数a\b\c是三角行的三条边长,且满足条件条件(x+a)(x+b)+(x+b)(X+c)+(x 2020-06-12 …
解方程abc都为正数,x-a-b/c+x-b-c/a+x-c-a/bx-a-b/c(+x-b-c) 2020-06-12 …
x²+y²-c²=0,x²/a²+y²/b²=1,a²=b²+c²x²+y²-c²=0,x²/a² 2020-07-18 …
若a,b,c互不相等,求证关于x的方程(a^2+b^2+c^2)X^2+2(a+b+c)X+3=0 2020-08-01 …
一道化学推断题A,B,C,X为常见纯净物,A+X生成B+X生成C.若X为金属单质,向C中加AgNo3 2020-12-28 …
初2一元二次方程已知a,b,c是不全为0的3个实数,那么关于x的一元二次方程x^2+(a+b+c)x 2021-02-02 …