早教吧作业答案频道 -->数学-->
已知定点A(-2,0),动点B是圆F(X-2)^2+Y^2=64(F为圆心)上一点,线段AB的垂直平分线交BF于P.已知定点A(-2,0),动点B是圆F(X-2)^2+Y^2=64(F为圆心)上一点,线段AB的垂直平分线交BF于P.1.则动点P的轨迹
题目详情
已知定点A(-2,0),动点B是圆F(X-2)^2+Y^2=64(F为圆心)上一点,线段AB的垂直平分线交BF于P.已知定点A(-2,0),动点B是圆F(X-2)^2+Y^2=64(F为圆心)上一点,线段AB的垂直平分线交BF于P.1.则动点P的轨迹方程为2.直线Y=√3X+1交P点的轨迹于M,N两点,若P点的轨迹上存在点C,是向量OM+向量ON=m倍向量OC,求C点坐标!要求使用椭圆参数方程去做!并要回答双曲线参数方程的应用且要举例题说明!好的回答一定加分!
▼优质解答
答案和解析
(1)由题意|PA|=|PB|,且|PB|+|PF|=8,
∴|PA|+|PF|=8>|AF|.
因此点P的轨迹是以A,F为焦点的椭圆、(4分)
设所求椭圆的方程为x²/a²+y²/b²=1(a>b>0)
∴2a=8,a=4,a²-b²=c²=2²=4
∴b2=12
∴点P的轨迹方程为x²/16+y²/12=1
(2)假设存在满足题意的点C(4sinα,2√3cosα),设M(x1,y1),N(x2,y2)
由向量OM+向量ON=m倍向量OC可知
(x1+x2,y1+y2)=m(4sinα,2√3cosα)
∴4sinα=(x1+x2)/m;2√3cosα=(y1+y2)/m
再将直线Y=√3X+1代入椭圆方程可得
15x^2+8√3x-44=0
则x1+x2=-8√3/15
y1+y2=√3(x1+x2)+2=2/5
∴sinα=-2√3/(15m) ;√3cosα=√3/(15m)
由sin²α+cos²α=1得
m²=1/15
∴m=±1/√15
∴sinα=-2√5/5,cosα=√5/5或sinα=2√5/5,cosα=-√5/5
∴点C坐标为(-8√5/5,2√15/5)或(8√5/5,-2√15/5)
∴|PA|+|PF|=8>|AF|.
因此点P的轨迹是以A,F为焦点的椭圆、(4分)
设所求椭圆的方程为x²/a²+y²/b²=1(a>b>0)
∴2a=8,a=4,a²-b²=c²=2²=4
∴b2=12
∴点P的轨迹方程为x²/16+y²/12=1
(2)假设存在满足题意的点C(4sinα,2√3cosα),设M(x1,y1),N(x2,y2)
由向量OM+向量ON=m倍向量OC可知
(x1+x2,y1+y2)=m(4sinα,2√3cosα)
∴4sinα=(x1+x2)/m;2√3cosα=(y1+y2)/m
再将直线Y=√3X+1代入椭圆方程可得
15x^2+8√3x-44=0
则x1+x2=-8√3/15
y1+y2=√3(x1+x2)+2=2/5
∴sinα=-2√3/(15m) ;√3cosα=√3/(15m)
由sin²α+cos²α=1得
m²=1/15
∴m=±1/√15
∴sinα=-2√5/5,cosα=√5/5或sinα=2√5/5,cosα=-√5/5
∴点C坐标为(-8√5/5,2√15/5)或(8√5/5,-2√15/5)
看了 已知定点A(-2,0),动点...的网友还看了以下:
在△ABC中,过B,C分别作∠BAC的平分线的垂线,E,F为垂足,AD⊥BC于D,M为BC中点.求 2020-04-25 …
1.已知△ABC,AD平分∠BAC,CE⊥AD交AB于E,EF‖BC,交AC于F.求证∠FEC=∠ 2020-05-16 …
如图,在直角坐标系中,点A坐标为(1,0),点B坐标为(0,1),E、F是线段AB上的两个动点,且 2020-07-21 …
从空间一点P向二面角α-L-β的两个平面α,β分别做垂线PE,PF,E,F为垂足从空间一点P向二面 2020-07-29 …
从空间一点P向二面角α-L-β的两个平面α,β分别做垂线PE,PF,E,F为垂足,从空间一点P向二 2020-07-29 …
在平面直角坐标系中,点A(-5,0),以OA为直径在第二象限内作半圆C,点B是该半圆周上一动点,连 2020-07-29 …
求一△的外心和垂心已知三点O(0,0),B(1,0),C(b,c)是△OBC的三个顶点,求三点的的 2020-07-30 …
(本小题满分12分)已知函数(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂 2020-11-01 …
点B,D位于AC的两侧,且AB=CD,且AB=CD,过E,F分别作DE垂直AC于E,BF垂直AC于F 2020-11-03 …
如图,在△ABC中,∠ACB=90°,AC=BC=1,E,F是线段AB上的两个动点,且∠ECF=45 2020-12-24 …