早教吧作业答案频道 -->数学-->
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为()A.α1,α3B.α1,α2C.α1,α2,α3D.α2,α3,α4
题目详情
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为( )
A. α1,α3
B. α1,α2
C. α1,α2,α3
D. α2,α3,α4
A. α1,α3
B. α1,α2
C. α1,α2,α3
D. α2,α3,α4
▼优质解答
答案和解析
因为方程组Ax=0的基础解系中只有一个向量,
所以:r(A)=4-1=3,
从而:r(A*)=1,
于是A*X=0的基础解系中含3个线性无关的解向量,
又因为:Ax=0有非零解,
所以:|A|=0,
故:A*A=|A|E=0,
从而α1,α2,α3,α4都是方程组A*X=0的解,
又因为(1,0,1,0)T是方程组AX=0的一个基础解系,
所以α1,α3线性相关,
因此α2,α3,α4线性无关,
故α2,α3,α4是A*X=0的基础解系.
故选:D.
因为方程组Ax=0的基础解系中只有一个向量,
所以:r(A)=4-1=3,
从而:r(A*)=1,
于是A*X=0的基础解系中含3个线性无关的解向量,
又因为:Ax=0有非零解,
所以:|A|=0,
故:A*A=|A|E=0,
从而α1,α2,α3,α4都是方程组A*X=0的解,
又因为(1,0,1,0)T是方程组AX=0的一个基础解系,
所以α1,α3线性相关,
因此α2,α3,α4线性无关,
故α2,α3,α4是A*X=0的基础解系.
故选:D.
看了 设A=(α1,α2,α3,α...的网友还看了以下:
设A为4*3矩阵,B为3*4矩阵,若3阶矩阵C满足C^2-5C-(|AB|-7)E=0,其中E为3 2020-04-12 …
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2 2020-04-13 …
关于矩阵的秩的问题题:设A为4×3矩阵,B为3×4矩阵,且R(A)=2,R(B)=3,求R(AB) 2020-05-13 …
设矩阵A=[α1,α2,α3,α4,α5]=[1,1,3,1,4;2,1,4,1,5;1,1,3, 2020-06-30 …
请教一道关于群的基础证明题,相信学过的一定会做~考虑形如1**1*1的实3×3矩阵的集合Ua)证明 2020-07-14 …
线形代数中用正交矩阵化矩阵A为对角矩阵A的特征值λ1λ2λ3,而α1α2α3为分别属于λ1λ2λ3 2020-07-18 …
设3阶实对数矩阵A的特征值是1,2,3,矩阵A属于特征值1,2的特征向量分别急求设3阶实对数矩阵A 2020-07-22 …
有关矩阵的判断对错错的麻烦举出反例1.矩阵B的第一和第3列相同,那么AB的第1和第3列相同,其中A 2020-07-25 …
设A是4×3矩阵,r(A)=1,ξ1,ξ2,ξ3是非齐次线性方程组Ax=b的三个线性无关解,下列哪 2020-08-02 …
设ξ1,ξ2,ξ3是齐次线性方程组AX=0的基础解系,则该方程组的基础解系还可以表示为()A.ξ1 2020-08-02 …