早教吧作业答案频道 -->其他-->
已知函数f(x)=ex-ax2(a∈R).(Ⅰ)求函数f(x)在点P(0,1)处的切线方程;(Ⅱ)若函数f(x)为R上的单调递增函数,试求a的取值范围.
题目详情
已知函数f(x)=ex-ax2(a∈R).
(Ⅰ)求函数f(x)在点P(0,1)处的切线方程;
(Ⅱ)若函数f(x)为R上的单调递增函数,试求a的取值范围.
(Ⅰ)求函数f(x)在点P(0,1)处的切线方程;
(Ⅱ)若函数f(x)为R上的单调递增函数,试求a的取值范围.
▼优质解答
答案和解析
(Ⅰ)∵f(x)=ex-ax2(a∈R).
∴f′(x)=ex-2ax,
∴f′(0)=1,
即f(x)在点P(0,1)处的切线方程为y-1=x,即y=x+1.
(Ⅱ)要使函数f(x)为R上的单调递增函数,
则f′(x)=ex-2ax≥0恒成立,
①当x>0时,2a≤
成立,
设g(x)=
,则g′(x)=
,
由g′(x)=0得x=1,
当x>1时,g′(x)>0,此时函数单调递增,
当x<1时,g′(x)<0,此时函数单调递减.
∴g(x)min=g(1)=e,∴a≤
.
②x<0时,2a≥
成立,
∵
<0,∴2a≥0,则a≥0;
又a=0,f′(x)=ex≥0恒成立;
综上,若函数f(x)为R上的单调递增函数,则0≤a≤
.
∴f′(x)=ex-2ax,
∴f′(0)=1,
即f(x)在点P(0,1)处的切线方程为y-1=x,即y=x+1.
(Ⅱ)要使函数f(x)为R上的单调递增函数,
则f′(x)=ex-2ax≥0恒成立,
①当x>0时,2a≤
ex |
x |
设g(x)=
ex |
x |
ex(x−1) |
x2 |
由g′(x)=0得x=1,
当x>1时,g′(x)>0,此时函数单调递增,
当x<1时,g′(x)<0,此时函数单调递减.
∴g(x)min=g(1)=e,∴a≤
e |
2 |
②x<0时,2a≥
ex |
x |
∵
ex |
x |
又a=0,f′(x)=ex≥0恒成立;
综上,若函数f(x)为R上的单调递增函数,则0≤a≤
e |
2 |
看了 已知函数f(x)=ex-ax...的网友还看了以下:
设函数f(x)在x=a处二阶可导,又limf'(x)/(x-a)=-1,则()A.x=a是f(x设函 2020-03-31 …
求曲线上点(x,y)处的切线的斜率时,可转化为函数,利用导数知识可得k=f'(x)怎么得到的,若曲 2020-05-13 …
函数数学题.设f(x)=x^2-alnx g(x)=x-a根号x的图像分别交直线x+1于点A,B, 2020-05-15 …
过曲线y=x*x(x>=0)某点处A作切线,使之与曲线与x轴所围成图形的面积为1/12 求切点A的 2020-05-16 …
求一下曲线在x=2处的切线方程,超级无敌霹雳啪啦急!1:求一下曲线在x=2处的切线方程f(x)=2 2020-06-21 …
(1/2)已知函数f(x)=ax^2+1(a>0),g(x)=x^3+bx.若曲线f(x)与曲线g 2020-06-27 …
已知函数f(x)=2ex-(x-a)2+3,a∈R.(1)若函数y=f(x)的图象在x=0处的切线 2020-07-20 …
已知y=a√x(a>0)与曲线y=ln√x在点(x0,y0)处有公共切线,(1.)求a的值及切点已 2020-07-31 …
从出发点到鸡冠山,路途最短是A线,但是一旅行团却选择了B线,这是因为()A.山脊较为安全,且山谷不能 2020-12-27 …
19.设f(x)的导数在x=a处连续,又limf(x)/(x-a)=1(x->a),则A.x=a19 2020-12-31 …