早教吧作业答案频道 -->其他-->
已知定义在(-∞,0)∪(0,+∞)上的函数f(x)满足:①对于任意x,y∈(-∞,0)∪(0,+∞),f(x•y)=f(x)+f(y);②当x>1时,f(x)>0,且f(2)=1.(1)试判断函数f(x)的奇
题目详情
已知定义在(-∞,0)∪(0,+∞)上的函数f(x)满足:①对于任意x,y∈(-∞,0)∪(0,+∞),f(x•y)=f(x)+f(y);②当x>1时,f(x)>0,且f(2)=1.
(1)试判断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,+∞)上的单调性;
(3)求函数f(x)在(0,4]的最大值;
(4)求定义在(0,+∞)上的不等式f(3x-2)+f(x)≤4的解集.
(1)试判断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,+∞)上的单调性;
(3)求函数f(x)在(0,4]的最大值;
(4)求定义在(0,+∞)上的不等式f(3x-2)+f(x)≤4的解集.
▼优质解答
答案和解析
(1)令x=y=1,则f(1•1)=f(1)+f(1),解得f(1)=0;
再令x=y=-1,则f[(-1)•(-1)]=f(-1)+f(-1),解得f(-1)=0;
对于条件f(x•y)=f(x)+f(y),令y=-1,则f(-x)=f(x)+f(-1)=f(x);
又函数f(x)的定义域关于原点对称,∴函数f(x)为偶函数.
(2)在(0,+∞)上任取x1,x2,且x1<x2,则有
>1.又x>1时,f(x)>0,∴f(
)>0;
∵f(x2)=f(x1)+f(
),∴f(x2)−f(x1)=f(
)>0,即f(x2)>f(x1);
∴函数f(x)在(0,+∞)上是增函数;
(3)∵f(4)=f(2×2)=f(2)+f(2),又f(2)=1,∴f(4)=2;
由(2)知f(x)在(0,4]上是增函数,∴f(x)max=f(4)=2;
(4)∵f(3x-2)+f(x)=f[(3x-2)x],4=2+2=f(4)+f(4)=f(16);
∴原不等式等价于f[(3x-2)x]≤f(16);
又不等式是定义在(0,+∞)上,结合(2)得
;
解得
<x≤
;
∴原不等式的解集是(
,
].
再令x=y=-1,则f[(-1)•(-1)]=f(-1)+f(-1),解得f(-1)=0;
对于条件f(x•y)=f(x)+f(y),令y=-1,则f(-x)=f(x)+f(-1)=f(x);
又函数f(x)的定义域关于原点对称,∴函数f(x)为偶函数.
(2)在(0,+∞)上任取x1,x2,且x1<x2,则有
x2 |
x1 |
x2 |
x1 |
∵f(x2)=f(x1)+f(
x2 |
x1 |
x2 |
x1 |
∴函数f(x)在(0,+∞)上是增函数;
(3)∵f(4)=f(2×2)=f(2)+f(2),又f(2)=1,∴f(4)=2;
由(2)知f(x)在(0,4]上是增函数,∴f(x)max=f(4)=2;
(4)∵f(3x-2)+f(x)=f[(3x-2)x],4=2+2=f(4)+f(4)=f(16);
∴原不等式等价于f[(3x-2)x]≤f(16);
又不等式是定义在(0,+∞)上,结合(2)得
|
解得
2 |
3 |
8 |
3 |
∴原不等式的解集是(
2 |
3 |
8 |
3 |
看了 已知定义在(-∞,0)∪(0...的网友还看了以下:
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
设y=f(x)是R上的任意函数,下列叙述正确的是()A.y=f(x)•f(-x)是奇函数B.y=f 2020-06-09 …
函数y=f(x)对定义域内的任意X都有f(a+x)=f(a-x),则y=f(x)的图像关于直线x= 2020-06-25 …
若定义在R上的函数y=f(x)满足:对于任意实数x,y,总有f(x+y)+f(x-y)=2f(x) 2020-07-15 …
3)这几种变换在图像上是如何的?为什么?请多列举几个解析式做例子函数y=f(x)变换为函数y=f( 2020-07-25 …
设D是一有界闭域,函数f(x,y)在D上连续,在D内偏导数存在,且满足等式?f(x,y)?x+2? 2020-07-31 …
如果y=f(x)的反函数是y=f-1(x),则下列命题中一定正确的是()A.若y=f(x)在[1, 2020-08-01 …
已知函数y=f(x),(x≠0)对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y) 2020-08-01 …
人教版高中数学必修一求教定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任 2020-10-31 …
单选设函数f(x)可导,又y=f(-x),则y‘=(A.f‘(x)B.f‘(-x)C.-f‘(x)D 2020-11-03 …