早教吧作业答案频道 -->数学-->
我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:(1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;(2)如图1,在△ABC中,AB=AC
题目详情
我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:
(1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;
(2)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;
(3)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说
明理由.
(1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;
(2)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;
(3)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说

▼优质解答
答案和解析
(1)等腰梯形(或矩形,或正方形)
(2)证法一:取AC的中点H,连接HE、HF
∵点E为BC中点
∴EH为△ABC的中位线
∴EH∥AB,且EH=
AB
同理FH∥DC,且FH=
DC
∵AB=AC,DC=AC
∴AB=DC,EH=FH
∴∠1=∠2
∵EH∥AB,FH∥DC
∴∠2=∠4,∠1=∠3
∴∠4=∠3
∵∠AGE+∠4=180°,∠GEC+∠3=180°
∴∠AGE=∠GEC
∴四边形AGEC是邻角四边形
证法二:连接AE
设∠B的度数为x
∵AB=AC,CD=CA
∴∠C=∠B=x,∠1=
=90°-

∵F是AD的中点
∴AF=EF=
AD
∴∠2=∠1=90°-
∴∠AGE=∠B+∠2=x+90°-
=90°+
∠GEC=180°-(90°-
)=90°+
∴∠AGE=∠GEC
∴四边形AGEC是邻角四边形
(3)存在等邻角四边形,为四边形AGHC.

(2)证法一:取AC的中点H,连接HE、HF
∵点E为BC中点
∴EH为△ABC的中位线
∴EH∥AB,且EH=
1 |
2 |
同理FH∥DC,且FH=
1 |
2 |
∵AB=AC,DC=AC
∴AB=DC,EH=FH
∴∠1=∠2
∵EH∥AB,FH∥DC
∴∠2=∠4,∠1=∠3
∴∠4=∠3
∵∠AGE+∠4=180°,∠GEC+∠3=180°
∴∠AGE=∠GEC
∴四边形AGEC是邻角四边形
证法二:连接AE
设∠B的度数为x
∵AB=AC,CD=CA
∴∠C=∠B=x,∠1=
180°−x |
2 |
x |
2 |

∵F是AD的中点
∴AF=EF=
1 |
2 |
∴∠2=∠1=90°-
x |
2 |
∴∠AGE=∠B+∠2=x+90°-
x |
2 |
x |
2 |
∠GEC=180°-(90°-
x |
2 |
x |
2 |
∴∠AGE=∠GEC
∴四边形AGEC是邻角四边形
(3)存在等邻角四边形,为四边形AGHC.
看了 我们给出如下定义:有一组相邻...的网友还看了以下:
f(x+1)=1/2f(x),则f(x)等于多少?下列函数式中,满足f(x+1)=1/2f(x)的是 2020-03-30 …
A=[-1,1]B=[﹙-√2﹚/2,﹙√2﹚/2]函数f(x)=2x²+mx-1一设不等式f(x 2020-04-27 …
已知α=(1,a,1)T,β=(-1,-1,-b)T,γ=(b,2,0)T是三阶实对称矩阵A的三个 2020-05-14 …
设a、b都是正整数,a²+ab+1被b²+ab+1整除,证明:a=b答案只有一句话:应用 b(a² 2020-05-16 …
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
如何解释代数的得意义:(1)a-b的平方(2)(a-b)的平方(3)a的平方-b的平方(4)a-b 2020-07-07 …
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
已知a>0,b>0且a+b=1,则(1/a^2-1)(1/b^2-1)的最小值是多少?(1/a²-1 2020-11-01 …
要正确快的最好给个解题思路已知1+2+3···+31+32+33=17×33求1-3+2-6+3-9 2020-12-27 …