早教吧作业答案频道 -->其他-->
凸四边形ABCD的面积是S,四边形内一点M关于四边中点的对称点分别是P、Q、R、S,则四边形PQRS的面积是.
题目详情
凸四边形ABCD的面积是S,四边形内一点M关于四边中点的对称点分别是P、Q、R、S,则四边形PQRS的面积是______.
▼优质解答
答案和解析
设该凸四边形为四边形ABCD,不妨设M关于AB、BC、CD、DA的中点对称的点分别是P、Q、R、S,
设AB,BC,CD,AD的中点分别为:R,X,V,W,连接RX,WR,XV,WV,BD,
∵W是AD中点,R是AB中点,
∴WR∥BD,WR=
BD,
∴△AWR∽△ADB,
∴
=(
) 2=
,
同理可得:
=
,
∴S△AWR+S△CVX=
S四边形ABCD,
同理可得:S四边形RWVX=
S四边形ABCD,
∵R,W,V,X还是PM,SM,MR,MQ的中点,
∴RX∥PQ,RX=
PQ;RW∥PS,RW=
PS;VW∥RS,VW=
SR;VX∥RQ,VX=
QR,
∴
=(
) 2=
,
同理可得出:
=
=
=
,
故S四边形RWVX=
S四边形PSRQ,
进而得出:
S四边形PSRQ=

设AB,BC,CD,AD的中点分别为:R,X,V,W,连接RX,WR,XV,WV,BD,
∵W是AD中点,R是AB中点,
∴WR∥BD,WR=
1 |
2 |
∴△AWR∽△ADB,
∴
S△AWR |
S△ADB |
1 |
2 |
1 |
4 |
同理可得:
S△CVX |
S△CDB |
1 |
4 |
∴S△AWR+S△CVX=
1 |
4 |
同理可得:S四边形RWVX=
1 |
2 |
∵R,W,V,X还是PM,SM,MR,MQ的中点,
∴RX∥PQ,RX=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴
S△RMX |
S△PMQ |
1 |
2 |
1 |
4 |
同理可得出:
S△MRW |
S△MPS |
S △MWV |
S△MSR |
S△MVX |
S△MRQ |
1 |
4 |
故S四边形RWVX=
1 |
4 |
进而得出:
1 |
4 |
作业帮用户
2017-10-20
看了 凸四边形ABCD的面积是S,...的网友还看了以下:
三个方程四个未知量的线性非齐次方程组满足什么情况时一定有解?三个方程四个未知量的线性方程组AX=b 2020-04-26 …
若球的半径为r它的体积用公式v=三分之四πr立方来计算,则当体积v=500立方厘米时,半径r是多少 2020-05-13 …
正方体ABCD-A’B"C"D"中P,Q,R分别是AB,AD,BC的中点,那么正方体的过P,Q,R 2020-05-13 …
如图,线段上四个点表示的数分别为p、q、r、s,若|p-r|=10,|p-s|=12,|q-s|= 2020-05-13 …
已知正方体ABCD-A1B1C1D1中,E、F分别为D1C1,C1B1的中点,AC∩BD=P,A1 2020-05-16 …
程序,数学小知识点解答证明:a可以表示成a=kb+r,则r=amodb假设d是a,b的一个公约数, 2020-06-11 …
如图a、b、c、d四个点在一条直线上,a和b、b和c、c和d间的距离均为R,在a点处固定有一电荷量 2020-06-12 …
矩阵证明问题1.如何证明R(A)=R(A')=R(AA')2.设四阶方阵A和B的伴随矩阵为A*和B 2020-07-08 …
过圆心做xy轴,在圆心O(x0,y0)做两同心圆A,B,圆A半径为r,圆B半径为R,R>r,未知点 2020-08-01 …
如用,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心d的轴线上有a、b、c、e四 2020-11-26 …