早教吧作业答案频道 -->数学-->
设x=R,已知A={x│x=f(x)},B={x│x=f[f(x)]}(1)求证:A是B的子集.(2)当f(x)=x^2+ax+b且A={-2,2}时,试用列举法表示集合B.
题目详情
设x=R,已知A={x│x=f(x)},B={x│x=f[f(x)]}
(1)求证:A是B的子集.
(2)当f(x)=x^2+ax+b且A={-2,2}时,试用列举法表示集合B.
(1)求证:A是B的子集.
(2)当f(x)=x^2+ax+b且A={-2,2}时,试用列举法表示集合B.
▼优质解答
答案和解析
(1)
for all x ∈ A
=> x = f(x)
=>f(x) = f(f(x))
=>x = f(f(x)) ( x= f(x)
=> x ∈ B
then A is subset of B
(2)
f(x)=x^2+ax+b = x
x^2 + (a-1)x + b =0
sum of roots = -(a-1)/2 = 0
a= 1
products of roots = b = -4
ie f(x)= x^2 +x -4
for B = {x│x=f[f(x)]}
f(x) = x^2 +x - 4
f(f(x) )= ( x^2+x -4 )^2 +( x^2+x -4 )-4
x= ( x^2+x -4 )^2 +( x^2+x -4 )-4
x= (x^2-4)^2 + 2x(x^2-4) + x^2
+( x^2+x -4 )-4
x= x^4- 8x^2 +16 + 2x^3-8x + x^2
+( x^2+x -4 )-4
x^4+ 2x^3- 6x^2-8x+8 =0
(x^4-6x^2+8) + 2x(x^2-4)=0
(x^2-4)(x^2-2) + 2x(x^2-4)=0
(x^2-4)(x^2+2x-2)=0
x = 2 or -2 or -1+√3 or -1-√3
B={-1+√3 ,-1-√3,2,-2}
for all x ∈ A
=> x = f(x)
=>f(x) = f(f(x))
=>x = f(f(x)) ( x= f(x)
=> x ∈ B
then A is subset of B
(2)
f(x)=x^2+ax+b = x
x^2 + (a-1)x + b =0
sum of roots = -(a-1)/2 = 0
a= 1
products of roots = b = -4
ie f(x)= x^2 +x -4
for B = {x│x=f[f(x)]}
f(x) = x^2 +x - 4
f(f(x) )= ( x^2+x -4 )^2 +( x^2+x -4 )-4
x= ( x^2+x -4 )^2 +( x^2+x -4 )-4
x= (x^2-4)^2 + 2x(x^2-4) + x^2
+( x^2+x -4 )-4
x= x^4- 8x^2 +16 + 2x^3-8x + x^2
+( x^2+x -4 )-4
x^4+ 2x^3- 6x^2-8x+8 =0
(x^4-6x^2+8) + 2x(x^2-4)=0
(x^2-4)(x^2-2) + 2x(x^2-4)=0
(x^2-4)(x^2+2x-2)=0
x = 2 or -2 or -1+√3 or -1-√3
B={-1+√3 ,-1-√3,2,-2}
看了 设x=R,已知A={x│x=...的网友还看了以下:
1.集合A={x/ x=2n+1,n属于Z},B={x/ x=4n±1,n属于Z},则A与B的关系 2020-04-05 …
关于集合描述法的填空描述法的一般形式是{x∈I|P(x)},I是X的取值范围的,P(x)是集合中元 2020-04-26 …
集合部分求救!1.写出集合A={2,3,4}的所有子集和真子集2.说出下列之间每对集合之间的关系( 2020-06-03 …
已知有理数x,y,z满足x+[y]+{z}=-0.9,[x]+{y}+z=0.2,{x}+y+[z 2020-06-14 …
若A={(x,y)|(x-1)^2+(y-2)^2≤5/4}与B={(x,y)||x-1|+2|y 2020-06-14 …
设两个随机变量X和Y相互独立且同分布:P(X=-1)=P{Y=-1}=1/2,P{X=1}=P{Y 2020-06-19 …
设集合A={x|1<x<2},B={x|x<a},若A真包含于B,则实数a的范围是2.已知集合A= 2020-08-02 …
1、若{1,2}包含于A,A包含于{1,2,3,4,5},则满足条件的集合A的个数是()A-6B- 2020-08-02 …
1{x|x=2n,n∈Z}{x|x=4n+2,n∈Z}2设集合M={a,b},若集合N={x|x是M 2020-11-01 …
若集合a={x|a≤xa+3/4}包含于{x|0≤x≤1}若集合a={x|a≤xa+3/4}包含于{ 2020-11-15 …