如图,已知在正方形ABCD中,点O为对角线AC的中点,过O点的射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下面结论中:①图形中全等的三角形只有三对;②△EOF是等腰直角三
如图,已知在正方形ABCD中,点O为对角线AC的中点,过O点的射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下面结论中:
①图形中全等的三角形只有三对;②△EOF是等腰直角三角形;
③正方形ABCD的面积等于四边形OEBF面积的4倍;
④BE+BF=
OA;⑤AE2+BE2=2OP•OB.2
正确结论的个数是( )
A. 4个
B. 3个
C. 2个
D. 1个
图形中全等的三角形有四对:△ABC≌△ADC,△AOB≌△COB,△AOE≌△BOF,△BOE≌△COF;理由如下:
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠BAD=∠ABC=∠BCD=∠D=90°,∠BAO=∠BCO=45°,
在△ABC和△ADC中,
|
∴△ABC≌△ADC(SSS);
∵点O为对角线AC的中点,
∴OA=OC,
在△AOB和△COB中,
|
∴△AOB≌△COB(SSS);
∵AB=CB,OA=OC,∠ABC=90°,
∴∠AOB=90°,∠OBC=45°,
又∵∠EOF=90°,
∴∠AOE=∠BOF,
在△AOE和△BOF中,
|
∴△AOE≌△BOF(ASA);
同理:△BOE≌△COF;
②正确;理由如下:
∵△AOE≌△BOF,
∴OE=OF,
∴△EOF是等腰直角三角形;
③正确.理由如下:
∵△AOE≌△BOF,
∴四边形OEBF的面积=△ABO的面积=
1 |
4 |
④正确.理由如下:
∵△BOE≌△COF,
∴BE=CF,
∴BE+BF=CF+BF=BC=AB=
2 |
⑤正确.理由如下:
∵△AOE≌△BOF,
∴AE=BF,
∴AE2+CF2=BE2+BF2=EF2=2OF2,
在△OPF与△OFB中,
∠OBF=∠OFP=45°,
∠POF=∠FOB,
∴△OPF∽△OFB,
∴OP:OF=OF:OB,
∴OF2=OP•OB,
∴AE2+CF2=20P•OB.
正确结论的个数有4个;
故选:A.
已知fx是一次函数,且满足f[f(x)]=x1.已知f(x)是一次函数,且满足f[f(x)]=x, 2020-06-11 …
设函数f(x)在x=0处连续,下列命题错误的是()A.若limx→0f(x)x存在,则f(0)=0 2020-06-12 …
f(3X+1)=9X^-6x+5求f(X)的解析式f(√x+1)=x+2√2求f(x)若一次函数f 2020-06-20 …
已知函数f(x)、g(x)定义在同一区间D上,f(x)是增函数,g(x)是减函数,且g(x)≠0, 2020-07-14 …
已知函数f(x)的定义域为D:(-∞,0)∪(0,+∞),且满足对于任意x,y∈D,有f(xy)= 2020-07-21 …
设A={1,2,3,4,5,6},则满足条件f(f(x))=f(x)的映射f:A→A的个数为()设 2020-07-30 …
定义在R上的偶函数y=f满足f=-f,且在-3,-2上是减函数,若a,b是锐角三角形的两个内角,则 2020-08-01 …
初三相似三角形已知:如图,等腰梯形ABCD中,AB//DC,BE垂直于DC于E,联结BD,F是BD 2020-08-02 …
一道高二文科函数题~f(x)满足f(f(x)-x^2+x)=f(x)-x^2+x定义域为R,已知f( 2020-11-21 …
1)设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明:在(a,b)内存在一点ξ,使f'( 2020-12-28 …