早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在锐角△ABC中,AB=4,∠BAC=45°.∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点.则BM+MN的最小值是2222.

题目详情
如图,在锐角△ABC中,AB=4,∠BAC=45°.∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点.则BM+MN的最小值是
2
2
2
2
▼优质解答
答案和解析
如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.
∵AD是∠BAC的平分线,
∴M′H=M′N′,
∴BH是点B到直线AC的最短距离(垂线段最短),
∵AB=4,∠BAC=45°,
∴BH=AB•sin45°=4×
2
2
=2
2

∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=2
2

故答案为:2
2