BarbicanTheatreMay29~June2ADreamPlayEveningsat7:15pm(May29at7pm)TicketsWeekdays:£27£20£16Sat:£29£23
Barbican Theatre
May 29 ~ June 2
A Dream Play
Evenings at 7:15 pm(May 29 at 7 pm)
Tickets
Weekdays :£ 27 £ 20 £ 16
Sat :£ 29 £ 23 £ 17
Barbican Theatre
June 6 ~ 17(not June 10 , 11 , 12 , 15)
swan Lake June 6 , 7 , 8 , 9 , 16 at 7:45 pm ; June 17 at 5 pm
Triple Bill June 13 , 14 at 7:45 pm
Tickets
Weekdays :£ 24 £ 19 £ 15
Sat / Sun :£ 26 £ 2l £ 17
Barbican Card Discount( 折扣 )
First night tickets for ~£ 12 each
Other performances : 20 % off 2 tickets
1 . You may watch A Dream Play at ___________on May 30 .
A . 10 am B . 5 pm C . 7 pm D . 7:15 pm
2 . If you want to watch Swan Lake , you call go to Barbican Theatre on ___________ .
A . May 29 B . June 5 C . June 13 D . June 16
3 . You may watch ___________ if you go to Barbican Theatre on 14 June .
A . swan Lake B . Triple Bill C . A Dream Play D . both Swan Lane and Triple Bill
4 . You can buy a first night ticket for Swan Lake at the price of ___________with a Barbican card .
A .£ 12 B .£ 15 C .£ 24 D .£ 30
5 . If you want to buy three tickets for Triple Bill On Tuesday . how much will you pay at least?
A .£ 45 . B .£ 51 . C .£ 57 . D .£ 60 .
DDBAA
关于化学反应的△H的理解正确的是()A.△H>0的反应是吸热反应B.△H=ΣH(反应物)-ΣH(生 2020-04-11 …
OK了,选择A,先把分子上面的通分,然后罗比得法则,分子分母对h求导,直接得出来的式子就是h趋近无 2020-06-05 …
导数计算f(x)在x=a处二阶可导,则limh→0时{[f(a+h)-f(a)]/h-f'(a)} 2020-06-10 …
导数计算f(x)在x=a处二阶可导,则limh→0时{[f(a+h)-f(a)]/h-f'(a)} 2020-06-10 …
求{[f(a+h)-f(a)]/h-f'(a)}/h在h趋于0的极限,f(x)在x=a的二阶可导 2020-07-16 …
设f(x)在点a的邻域内二阶可导,求[f(a+h)+f(a-h)-2f(a)]/(h的平方)在h趋 2020-07-16 …
设函数f(x)在x=a的某个邻域内二阶导数连续,且f''(a)≠0,根据拉格朗日中值定理有,f(a 2020-07-31 …
f(x)在x=a的某个领域内有定义,则他在x=a处可导的一个充分条件是当h趋于0,lin[f(a+ 2020-07-31 …
lim(h→0)[f(a+h)+f(a-h)-2f(a)]/h^2(设f^"(x)在x=a点邻近连续 2020-11-27 …
1.若f(x)在x=a处二阶可导,则((f(a+h)-f(a))/h-f'(a))/h当h趋向于0时 2020-12-23 …