早教吧作业答案频道 -->数学-->
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并
题目详情
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.


▼优质解答
答案和解析
数量关系为:BE=EC,位置关系是:BE⊥EC.
证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=45°+90°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD=CD=
AC,
∵AC=2AB,
∴AB=AD=DC,
∵在△EAB和△EDC中
,
∴△EAB≌△EDC(SAS),
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,
∴BE⊥EC.
证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,
∴∠EAD=∠EDA=45°,

∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=45°+90°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD=CD=
| 1 | 
| 2 | 
∵AC=2AB,
∴AB=AD=DC,
∵在△EAB和△EDC中
  | 
∴△EAB≌△EDC(SAS),
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,
∴BE⊥EC.
 看了 如图,在Rt△ABC中,∠B...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
在直线公式x=a+bt中,( )决定了直线在坐标系中的位置。A.a的数值B.t的数值C.b的数值D. 2020-05-21 …
在直线公式X=a+bt中,( )决定了直线在坐标系中的位置。 A.a的数值 B.t的数值C.b的数 2020-05-21 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
把直线a沿水平方向平移4厘米,平移后的像为直线b,则直线a与b之间的距离为?A等于4厘米B小于4厘 2020-07-22 …
平面α∥平面β,直线a∥β,直线b垂直a在β内的射影,那么下列位置关系一定正确的为()A.a∥αB 2020-07-30 …
高一数学:必修二第二章:点、直线、平面之间的位置关系(选择题)1.已知直线a,b与平面α,β,γ,下 2020-11-02 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …