早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2002•黑龙江)如图,直线l与x轴、y轴的正半轴分别交于A、B两点,OA、OB的长分别是关于x的方程x2-14x+4(AB+2)=0的两个根(OB>OA),P是直线l上A、B两点之间的一动点(不与A、B重合),PQ∥

题目详情
(2002•黑龙江)如图,直线l与x轴、y轴的正半轴分别交于A、B两点,OA、OB的长分别是关于x的方程x2-14x+4(AB+2)=0的两个根(OB>OA),P是直线l上A、B两点之间的一动点(不与A、B重合),PQ∥OB交OA于点Q.
(1)求tan∠BAO的值;
(2)若S△PAQ=
1
3
S四边形OQPB时,请确定点P在AB上的位置,并求出线段PQ的长;
(3)当点P在线段AB上运动时,在y轴上是否存在点M,使△MPQ为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵OA、OB的长分别是关于x的方程x2-14x+4(AB+2)=0的两个根,
∴OA+OB=-
b
a
=14,
由已知可得
OA+OB=14
OA•OB=4(AB+2)

又∵OA2+OB2=AB2
∴(OA+OB)2-2OA•OB=AB2
即142-8(AB+2)=AB2
∴AB2+8AB-180=0,
∴AB=10或AB=-18(不合题意,舍去),
∴AB=10,
∴x2-14x+48=0,
解得x1=6,x2=8,
∵OB>OA,∴OA=6,OB=8,
∴tan∠BAO=
OB
OA
4
3


(2)∵S△PAQ=
1
3
S四边形OQPB
∴S△PAQ=
1
4
S△AOB
∵PQ∥BO,
∴△PQA∽△BOA,
(
AP
AB
)2=(
PQ
BO
)2=
S△PQA
S△BOA
1
4

AP
AB
1
2
.∵AB=10,
∴AP=5,
又∵tan∠BAO=
4
3

∴sin∠BAO=
4
5

∴PQ=PA•sin∠BAO=
4
5
=4.

(3)存在,
设AB的解析式是y=kx+b,
作业帮用户 2016-12-14
问题解析
(1)根据勾股定理得出OA2+OB2=AB2,求出AB.然后把AB代入等式求出x的值继而求出OA,OB的值即可;
(2)已知S△PAQ=
1
3
S四边形OQPB,证明△PQA∽△BOA利用线段比求出AB,AP的值.知道PQ=PA•sin∠BAO,即可求解.
名师点评
本题考点:
一次函数综合题.
考点点评:
本题综合考查了一次函数的性质以及三角函数的有关知识,难度较大.
我是二维码 扫描下载二维码