早教吧作业答案频道 -->其他-->
如图1,矩形纸片ABCD的边长分别为a,b(a<b).将纸片任意翻折(如图2),折痕为PQ.(P在BC上),使顶点C落在四边形APCD内一点C′,PC′的延长线交直线AD于M,再将纸片的另一部分翻折,
题目详情
如图1,矩形纸片ABCD的边长分别为a,b(a<b).将纸片任意翻折(如图2),折痕为PQ.(P在BC上),使顶点C落在四边形APCD内一点C′,PC′的延长线交直线AD于M,再将纸片的另一部分翻折,使A落在直线PM上一点A′,且A′M所在直线与PM所在直线重合(如图3)折痕为MN.
(1)猜想两折痕PQ,MN之间的位置关系,并加以证明;
(2)若∠QPC的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕PQ,MN间的距离有何变化?请说明理由;
(3)若∠QPC的角度在每次翻折的过程中都为45°(如图4),每次翻折后,非重叠部分的四边形MC′QD,及四边形BPA′N的周长与a,b有何关系,为什么?

(1)猜想两折痕PQ,MN之间的位置关系,并加以证明;
(2)若∠QPC的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕PQ,MN间的距离有何变化?请说明理由;
(3)若∠QPC的角度在每次翻折的过程中都为45°(如图4),每次翻折后,非重叠部分的四边形MC′QD,及四边形BPA′N的周长与a,b有何关系,为什么?

▼优质解答
答案和解析
(1)PQ∥MN.
∵四边形ABCD是矩形,∴AD∥BC,且M在AD直线上,则有AM∥BC.
∴∠AMP=∠MPC.
由翻折可得:∠MPQ=∠CPQ=
(2)两折痕PQ,MN间的距离不变.
过P作PH⊥MN,则PH=PM•sin∠PMH,
∵∠QPC的角度不变,
∴∠C'PC的角度也不变,则所有的PM都是平行的.
又∵AD∥BC,
∴所有的PM都是相等的.
又∵∠PMH=∠QPC,故PH的长不变.
(3)当∠QPC=45°时,
四边形PCQC'是正方形,
四边形C'QDM是矩形.
∵C'Q=CQ,C'Q+QD=a,
∴矩形C'QDM的周长为2a.
同理可得矩形BPA'N的周长为2a,∴两个四边形的周长都为2a,与b无关.
∵四边形ABCD是矩形,∴AD∥BC,且M在AD直线上,则有AM∥BC.
∴∠AMP=∠MPC.
由翻折可得:∠MPQ=∠CPQ=

(2)两折痕PQ,MN间的距离不变.
过P作PH⊥MN,则PH=PM•sin∠PMH,
∵∠QPC的角度不变,
∴∠C'PC的角度也不变,则所有的PM都是平行的.
又∵AD∥BC,
∴所有的PM都是相等的.
又∵∠PMH=∠QPC,故PH的长不变.
(3)当∠QPC=45°时,
四边形PCQC'是正方形,
四边形C'QDM是矩形.
∵C'Q=CQ,C'Q+QD=a,
∴矩形C'QDM的周长为2a.
同理可得矩形BPA'N的周长为2a,∴两个四边形的周长都为2a,与b无关.
看了 如图1,矩形纸片ABCD的边...的网友还看了以下:
正方体中证明三点共线,在正方体ABCD-A'B'C'D'中,点E、F分别是AA’、CC’的中点,连结 2020-03-30 …
有关经纬线的说法,正确的是()A.赤道是南北半球的分界线,本初子午线是东西半球的分界线B.经线和纬 2020-04-23 …
如图所示,在三角形ABC中,角BAC=90度,AB=AC,角ACB的平分线交AB于D,过B作CD的 2020-05-16 …
如图①,现有长度分别为a、b、1的三条线段.加、减图②所示为长为a+b的线段,请用尺规作出长为a- 2020-06-11 …
一个三角形ABC的三条边分别为4,5,6.线段a长为2,线段b长为3,现要把线段b截成两段,使这两 2020-06-29 …
延长线段AB是指按端点A到B的方向延长;延长线段BA是指按从端点B到A的方向延长,这时也可以说反向 2020-07-30 …
在三角形ABC中,角A角B的平分线分别交对边于D,E角C的外角平分线交对边延长线于F,求证:D、E 2020-08-03 …
苔藓植物具有保持水土的作用,这是因为()A.根系发达,能吸收大量的水分B.长得矮小,密集生长,覆盖地 2020-11-05 …
圆形表盘的半径为10cm,0时39分时,延长时针分针,交圆形表盘于a,b两点,求劣弧ab的长和过这两 2020-11-29 …
急\求数学答案己知a=4,b=9,c是a、b的比例中项,则c=己知b分之a=d分之c=f分之e=5分 2021-02-02 …