早教吧作业答案频道 -->数学-->
如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.(1)证明EM⊥BF;(2)请在图中作出平面ABC与平面BEF的交线(不要求证明)(3)求平面BEF
题目详情
如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.

(1)证明EM⊥BF;
(2)请在图中作出平面ABC与平面BEF的交线(不要求证明)
(3)求平面BEF和平面ABC所成的锐二面角的正切值.

(1)证明EM⊥BF;
(2)请在图中作出平面ABC与平面BEF的交线(不要求证明)
(3)求平面BEF和平面ABC所成的锐二面角的正切值.
▼优质解答
答案和解析
(1)证明:∵EA⊥平面ABC,BM⊂平面ABC,∴EA⊥BM.
又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,
而EM⊂平面ACFE,∴BM⊥EM.
∵AC是圆O的直径,∴∠ABC=90°.
又∵∠BAC=30°,AC=4,
∴AB=2
,BC=2,AM=3,CM=1.
∵EA⊥平面ABC,FC∥EA,
=
,
∴FC⊥平面ABC.∴△EAM与△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°.∴∠EMF=90°,即EM⊥MF,
∵MF∩BM=M,∴EM⊥平面MBF.
而BF⊂平面MBF,∴EM⊥BF.
(2)延长EF交AC于G,连BG,则BG即为平面ABC与平面BEF的交线.
(3)过C作CH⊥BG,连接FH.
由(1)知FC⊥平面ABC,BG⊂平面ABC,∴FC⊥BG.
而FC∩CH=C,∴BG⊥平面FCH.
∵FH⊂平面FCH,∴FH⊥BG,
∴∠FHC为平面BEF与平面ABC所成的二面角的平面角.
在Rt△ABC中,∵∠BAC=30°,AC=4,
∴BM=AB•sin30°=
,
由
=
=
,得GC=2.
∵BG=
=2
,
又∵△GCH∽△GBM,
∴
=
,则CH=
=
=1.
∴△FCH是等腰直角三角形,∠FHC=45°,
∴平面BEF与平面ABC所成的锐二面角的余弦值为

又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,
而EM⊂平面ACFE,∴BM⊥EM.
∵AC是圆O的直径,∴∠ABC=90°.
又∵∠BAC=30°,AC=4,
∴AB=2
3 |
∵EA⊥平面ABC,FC∥EA,
FC |
EA |
1 |
3 |
∴FC⊥平面ABC.∴△EAM与△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°.∴∠EMF=90°,即EM⊥MF,
∵MF∩BM=M,∴EM⊥平面MBF.
而BF⊂平面MBF,∴EM⊥BF.
(2)延长EF交AC于G,连BG,则BG即为平面ABC与平面BEF的交线.
(3)过C作CH⊥BG,连接FH.
由(1)知FC⊥平面ABC,BG⊂平面ABC,∴FC⊥BG.
而FC∩CH=C,∴BG⊥平面FCH.
∵FH⊂平面FCH,∴FH⊥BG,
∴∠FHC为平面BEF与平面ABC所成的二面角的平面角.
在Rt△ABC中,∵∠BAC=30°,AC=4,
∴BM=AB•sin30°=
3 |
由
FC |
EA |
GC |
GA |
1 |
3 |
∵BG=
BM2+MG2 |
3 |
又∵△GCH∽△GBM,
∴
GC |
BG |
CH |
BM |
GC•BM |
BG |
2•
| ||
2
|
∴△FCH是等腰直角三角形,∠FHC=45°,
∴平面BEF与平面ABC所成的锐二面角的余弦值为
|
看了 如图,AC是圆O的直径,点B...的网友还看了以下:
一道简单的二阶导数和一道简单的不定积分1,设f"(x)存在,证明lim(h->0)[f(x0+h) 2020-05-13 …
设函数f(x)二次可微分,且f''(x)>0,f(0)=0证明:函数F(x)=f(x)/x,x≠0 2020-06-08 …
关于洛必达的证明,令F'(x)≠0不是与运用时矛盾了吗?非常不能理解.证明时要求F'(x)≠0,是 2020-06-11 …
原题是这样的.设f(x)定义在R,是R上的连续函数且对任意x,y属于R都满足f((x+y)/2)= 2020-07-10 …
不动点的基本问题设函数f(x)在R上定义,把满足f(x*)=x*的点称为f(x)的不动点.证明:若 2020-07-30 …
一道关于函数的证明题,我就剩一步证不出来,设f(x)=3ax的平方+2bx+c,若a+b+c=0, 2020-07-31 …
一个导数问题的理解设f(x)在[a,b]上连续,在(a,b)内可导且不恒于常数,f(a)=f(b) 2020-07-31 …
f(x+y)=f(x)+f(y),证明f(x)是正比例函数已知函数f(x)定义域为[-1,1],若 2020-08-03 …
怎么证明一个函数的不动点包含稳定点对于函数f(x),若有f(x)=x则称x为该函数的"不动点",若f 2020-10-30 …
推证:f(x+1)=1÷f(x)=>f(x+2)=f(x)f(x+2)=1÷f(x)=>f(x+4) 2020-11-03 …