早教吧作业答案频道 -->数学-->
如图,在三角形ABC中,角BAC=角BCA=50°,M是三角形内的一点,且角MAC=10°,角MCA=30°,求角BMC
题目详情
如图,在三角形ABC中,角BAC=角BCA=50°,M是三角形内的一点,且角MAC=10°,角MCA=30°,求角BMC
▼优质解答
答案和解析
过B作BD⊥AC,交AC于D,延长CM交BD于E,连接AE
∵∠BAC=∠BCA=50
∴AB=BC,∠ABC=180- ∠BAC-∠BCA=80
∵BD⊥AC
∴BD垂直平分AC ∠CBD=∠ABD=∠ABC/2=40
∵E为BD上的点
∴EC=EA ∠EAC=∠MCA=30
∴∠EAM=∠EAC-∠MAC=30-10=20,∠BAE=∠BAC-∠EAC=50-30=20
∴∠EAE=∠BAM
∵∠EMA=∠MCA+∠MAC=30+10=40
∴∠EMA=∠ABD
∴∠MEA=180-∠EMA-∠EAM=180-40-20=120
∠BEA=180-∠ABD-∠BAE=180-40-20=120
∴△ABE≌△AME (ASA)
∴AB=AM
∴∠BAM=∠BAE+∠EAM=20+20=40
∴∠AMB=(180-∠BAM)/2=(180-40)/2=70
∵∠AMC=180-∠MCA-∠MAC=180-30-10=140
∴∠BMC=360-∠AMC-∠AMB=360-140-70=150
数学辅导团解答了你的提问,
∵∠BAC=∠BCA=50
∴AB=BC,∠ABC=180- ∠BAC-∠BCA=80
∵BD⊥AC
∴BD垂直平分AC ∠CBD=∠ABD=∠ABC/2=40
∵E为BD上的点
∴EC=EA ∠EAC=∠MCA=30
∴∠EAM=∠EAC-∠MAC=30-10=20,∠BAE=∠BAC-∠EAC=50-30=20
∴∠EAE=∠BAM
∵∠EMA=∠MCA+∠MAC=30+10=40
∴∠EMA=∠ABD
∴∠MEA=180-∠EMA-∠EAM=180-40-20=120
∠BEA=180-∠ABD-∠BAE=180-40-20=120
∴△ABE≌△AME (ASA)
∴AB=AM
∴∠BAM=∠BAE+∠EAM=20+20=40
∴∠AMB=(180-∠BAM)/2=(180-40)/2=70
∵∠AMC=180-∠MCA-∠MAC=180-30-10=140
∴∠BMC=360-∠AMC-∠AMB=360-140-70=150
数学辅导团解答了你的提问,
看了 如图,在三角形ABC中,角B...的网友还看了以下:
若p,q,m为整数,且三次方程x的三次方+qx+m=0有整数解x=c若p,q,m为整数,且三次方程 2020-05-14 …
若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2 2020-05-14 …
已知反比例函数y=k/x的图象经A(-根号3,m)过点A作AB垂直于X轴于点B且三角形的面积为根号 2020-05-15 …
顺便将有关知识点名称也告诉我,已知向量m=(1,1),向量n与向量m的夹角为135度,且向量m*n 2020-05-21 …
问:三角形ABC的面积为?已知三角形ABC的一个内角为120度,并且三边长分别为m,m+4,m+8 2020-06-02 …
阅读理解:若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c 2020-07-09 …
已知向量m=(1,1),向量n与向量m的夹角为3/4pai,且向量m*向量n=-1(1)求向量n( 2020-07-22 …
如果三角形三边长5,m,n且满足(m+n)(m-n)=25求三角形的形状 2020-08-01 …
如果三角形的三边长分别为5,m,n,且满足(m+n)(m-n)=25,那么这个三角形是()A.锐角 2020-08-03 …
一道高中数学题,数学高手快来帮忙.若a,b,c∈R,且a的m次方加上b的m次方等于c的m次方,1<m 2020-12-21 …