早教吧作业答案频道 -->数学-->
高数………………设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0,试用柯西中值定理证明:f(x)/x^n=f^(n)(ax)/n!(0
题目详情
高数………………
设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0,试用柯西中值定理证明:f(x)/x^n=f^(n)(ax)/n!(0
设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0,试用柯西中值定理证明:f(x)/x^n=f^(n)(ax)/n!(0
▼优质解答
答案和解析
令g(x) = x^n,则 g^(k)(x) = A(n,k) x^(n-k),其中A(n,k) 为排列数,即A(n,k) = n!/ (n-k)!.
则g(0)=g'(0)=……=g^(n-1)(0)=0,g^(n) = n!.
f(x)/x^n = f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)]
因为 g(b1 * x) 0,b1在(0,1)之间,因此柯西中值定理可得
f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)] = f'(a1 * x) / g'(a1 * x),a1在(0,1)之间
反复用n次柯西定理可得
[f(x) - f(0)] / [g(x) - g(0)] = f'(a1 * x) / g'(a1 * x) =...=f^(n)(an * x) / g^(n)(an * x),an 在(0,1)之间
因为g^(n) (x) = n!
所以
f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)] = f^(n)(an * x) / g^(n)(an * x) = f^(n) (an * x) / n!
原题得证
则g(0)=g'(0)=……=g^(n-1)(0)=0,g^(n) = n!.
f(x)/x^n = f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)]
因为 g(b1 * x) 0,b1在(0,1)之间,因此柯西中值定理可得
f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)] = f'(a1 * x) / g'(a1 * x),a1在(0,1)之间
反复用n次柯西定理可得
[f(x) - f(0)] / [g(x) - g(0)] = f'(a1 * x) / g'(a1 * x) =...=f^(n)(an * x) / g^(n)(an * x),an 在(0,1)之间
因为g^(n) (x) = n!
所以
f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)] = f^(n)(an * x) / g^(n)(an * x) = f^(n) (an * x) / n!
原题得证
看了 高数………………设函数y=f...的网友还看了以下:
设函数f(a)=sina+根号3cosa,其中,角a的顶点与坐标原点重合,始边与x轴非负半轴重合, 2020-05-16 …
设函数fx=sinα+根号3倍的cosα,其中角阿尔法的顶点与坐标原点重合,始边与x轴非负半轴重合 2020-05-16 …
已知√2009=√x+√y,且0〈x〈y,求满足等式的整数x,y 2020-05-20 …
函数f(x,y)在(0,0)的某邻域内有定义且某邻域内有定义,且fx(0,0)=3,fy(0,0) 2020-06-03 …
f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x 2020-06-15 …
对于0,2,4,6,.2002.2004.组成的集合.这样表示x|x=2n,且0≤n≤1002为什 2020-06-28 …
对于0,2,4,6,8…2002,2004组成的集合,给出下列四种表示形式①{x|x=2n,且0≤ 2020-06-28 …
如图,正六边形的边长为10,分别以正六边形的顶点A、B、C、D、E、F为圆心,画6个全等的圆.若圆 2020-07-15 …
如图,正方形ABCD的边长为10,以正方形的顶点A、B、C、D为圆心画四个全等的圆.若圆的半径为x 2020-07-20 …
在集合{(x,y)|0≤x≤5且0≤y≤4,x∈Z,y∈Z}内任取1个元素,能使代数式x4+y3−1 2020-10-30 …