早教吧作业答案频道 -->数学-->
以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH
题目详情
以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.

(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.

(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.
▼优质解答
答案和解析
(1)四边形EFGH的形状是正方形.
(2)①∠HAE=90°+α,
在平行四边形ABCD中AB∥CD,
∴∠BAD=180°-∠ADC=180°-α,
∵△HAD和△EAB是等腰直角三角形,
∴∠HAD=∠EAB=45°,
∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-(180°-a)=90°+α,
答:用含α的代数式表示∠HAE是90°+α.
②证明:∵△AEB和△DGC是等腰直角三角形,
∴AE=
AB,DG=
CD,
在平行四边形ABCD中,AB=CD,
∴AE=DG,
∵△AHD和△DGC是等腰直角三角形,
∴∠HDA=∠CDG=45°,
∴∠HDG=∠HDA+∠ADC+∠CDG=90°+α=∠HAE,
∵△AHD是等腰直角三角形,
∴HA=HD,
∴△HAE≌△HDG,
∴HE=HG.
③答:四边形EFGH是正方形,
理由是:由②同理可得:GH=GF,FG=FE,
∵HE=HG,
∴GH=GF=EF=HE,
∴四边形EFGH是菱形,
∵△HAE≌△HDG,
∴∠DHG=∠AHE,
∵∠AHD=∠AHG+∠DHG=90°,
∴∠EHG=∠AHG+∠AHE=90°,
∴四边形EFGH是正方形.
(2)①∠HAE=90°+α,
在平行四边形ABCD中AB∥CD,
∴∠BAD=180°-∠ADC=180°-α,
∵△HAD和△EAB是等腰直角三角形,
∴∠HAD=∠EAB=45°,
∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-(180°-a)=90°+α,
答:用含α的代数式表示∠HAE是90°+α.
②证明:∵△AEB和△DGC是等腰直角三角形,∴AE=
| ||
| 2 |
| ||
| 2 |
在平行四边形ABCD中,AB=CD,
∴AE=DG,
∵△AHD和△DGC是等腰直角三角形,
∴∠HDA=∠CDG=45°,
∴∠HDG=∠HDA+∠ADC+∠CDG=90°+α=∠HAE,
∵△AHD是等腰直角三角形,
∴HA=HD,
∴△HAE≌△HDG,
∴HE=HG.
③答:四边形EFGH是正方形,
理由是:由②同理可得:GH=GF,FG=FE,
∵HE=HG,
∴GH=GF=EF=HE,
∴四边形EFGH是菱形,
∵△HAE≌△HDG,
∴∠DHG=∠AHE,
∵∠AHD=∠AHG+∠DHG=90°,
∴∠EHG=∠AHG+∠AHE=90°,
∴四边形EFGH是正方形.
看了 以四边形ABCD的边AB、B...的网友还看了以下:
下列说法中正确的有①等边三角形是等腰三角形②三角形按边分类可分为等腰三角形,等边三角形和不等边下列说 2020-03-30 …
三角形按边分类可分为A、等腰三角形和等边三角形B、钝角三角形、锐角三角形和直角三角形C、等腰三角形 2020-05-16 …
各个图形分平面或图形的公式比如圆分平面,圆分正方形,正方形分圆形等,让你求几个***最多把***分 2020-06-07 …
下列各句中,没有错别字的一句是()3分A.等量齐观万家灯火马首是瞻跋山涉水B.义无反顾半途而废毕恭 2020-06-27 …
下列命题不正确的是()A.对角线互相平分且一组邻边相等的四边形是菱形B.两组对边分别平行且一组邻边 2020-07-30 …
下列正确的是A:平分三角形内角的射线叫做三角形的角平分线B:钝角三角形都是不等腰三角形C:三角形的 2020-08-01 …
下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的 2020-08-01 …
下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D 2020-08-01 …
三角形的三条边分别是a,b,c,若满足a+b=2c,那么这个三角形是什么三角形?三角形的三条边分别 2020-08-03 …
下列加点成语使用不正确的一项是(3分)A.等到艺术上的共鸣变成友谊,友谊又悄悄地酝酿着爱情的时候,我 2020-11-27 …