早教吧作业答案频道 -->数学-->
如图,矩形ABCD中,AB=6,BC=3.点E在线段BA上从B点以每秒1个单位的速度出发向A点运动,F是射线CD上一动点,在点E、F运动的过程中始终保持EF=5,且CF>BE,点P是EF的中点,连接AP.设点E运动时
题目详情
如图,矩形ABCD中,AB=6,BC=3.点E在线段BA上从B点以每秒1个单位的速度出发向A点运动,F是射线CD上一动点,在点E、F运动的过程中始终保持EF=5,且CF>BE,点P是EF的中点,连接AP.设点E运动时间为ts.

(1)在点E运动过程中,AP的长度是如何变化的?______
A.一直变短 B.一直变长 C.先变长后变短 D.先变短后变长
(2)在点E、F运动的过程中,AP的长度存在一个最小值,当AP的长度取得最小值时,点P的位置应该在______.
(3)以P为圆心作⊙P,当⊙P与矩形ABCD三边所在直线都相切时,求出此时t的值,并指出此时⊙P的半径长..

(1)在点E运动过程中,AP的长度是如何变化的?______
A.一直变短 B.一直变长 C.先变长后变短 D.先变短后变长
(2)在点E、F运动的过程中,AP的长度存在一个最小值,当AP的长度取得最小值时,点P的位置应该在______.
(3)以P为圆心作⊙P,当⊙P与矩形ABCD三边所在直线都相切时,求出此时t的值,并指出此时⊙P的半径长..
▼优质解答
答案和解析
(1)在点E运动过程中,AP的长度存在一个最小值,即当P为AD中点时,AP最短,
则AP的长度是先变短后变长;
(2)在点E、F运动的过程中,AP的长度存在一个最小值,当AP的长度取得最小值时,如图所示,
∵P为EF的中点,∴EP=FP,
∵四边形ABCD为矩形,∴∠A=∠PDF=90°,
在△AEP和△DFP中,
,
∴△AEP≌△DFP(AAS),
∴AP=DP,
则此时P为AD的中点;
(3)如图3,当⊙P在矩形ABCD内分别与AB、AD、CD相切于点Q、R、N时,
连接PQ、PR、PN,则PQ⊥AB、PR⊥AD、PN⊥CD,
则四边形AQPR与四边形RPND为两个全等的正方形,
则PQ=AQ=AR=DR=
AD=
,
在Rt△PQE中,EP=
,由勾股定理可得:EQ=2,
则BE=BA-EQ-AQ=6-2-
=
,
解得t=
.
此时⊙P的半径为
;
如图4,当⊙P在矩形ABCD外分别与射线BA、AD、射线CD相切于点Q、R、N时,
类比图3可得,EQ=2,AQ=
,
∴BE=BA+AQ-EQ=6+
-2=
,
∴t=
,此时⊙P的半径为
.
故答案为:(1)D;(2)AD的中点

则AP的长度是先变短后变长;
(2)在点E、F运动的过程中,AP的长度存在一个最小值,当AP的长度取得最小值时,如图所示,
∵P为EF的中点,∴EP=FP,
∵四边形ABCD为矩形,∴∠A=∠PDF=90°,
在△AEP和△DFP中,
|
∴△AEP≌△DFP(AAS),
∴AP=DP,
则此时P为AD的中点;

连接PQ、PR、PN,则PQ⊥AB、PR⊥AD、PN⊥CD,
则四边形AQPR与四边形RPND为两个全等的正方形,
则PQ=AQ=AR=DR=
1 |
2 |
3 |
2 |
在Rt△PQE中,EP=
5 |
2 |
则BE=BA-EQ-AQ=6-2-
3 |
2 |
5 |
2 |
解得t=
5 |
2 |

3 |
2 |
如图4,当⊙P在矩形ABCD外分别与射线BA、AD、射线CD相切于点Q、R、N时,
类比图3可得,EQ=2,AQ=
3 |
2 |
∴BE=BA+AQ-EQ=6+
3 |
2 |
11 |
2 |
∴t=
11 |
2 |
3 |
2 |
故答案为:(1)D;(2)AD的中点
看了 如图,矩形ABCD中,AB=...的网友还看了以下:
已知正方形ABCD中,点P在对角线BD上,联结PC(1)过点P作PE⊥PC,交AB于点E,如图一所 2020-04-26 …
1,一次函数Y=kx+b,与x轴的交点坐标是什么?2.已知p=(E/R+r)^2*R,其中E与r是 2020-05-13 …
在长方体ABCD-A1B1C1D1中,E,P分别是BC,A1D1的中点,M,N分别是AE,CD1的 2020-05-16 …
催化剂中的一种,可能叫生物酶,或者酵素,反正英文大写是E做为催化剂反应如下E+S=ES可逆平衡,速 2020-06-30 …
条件概率问题P(E|F)=P(EF)/P(F)这个是如何从最原始的公式推导出来的?另外P(EF)我 2020-07-09 …
正方形ABCD边长为4,E为BC中点,P为AB上一动点,沿PE翻折三角形BPE得三角形FPE,直正 2020-07-20 …
正方形ABCD中,O为对角线AC的中点,P为AC上一点,连接BP,过点P作BP⊥PE,PE交直线C 2020-08-03 …
已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A、C不重合),过点P作PE⊥PB 2020-08-03 …
如图1在等边三角形ABC中,点D为AC上的一点,连接BD,直线L与AB,BD,BC分别相交于点E,P 2020-12-25 …
在同一直角坐标系中,⊙P上的点(x,y)如表1,直线l上的点(x,y)如表2.表1x…-3-2-10 2020-12-25 …