早教吧作业答案频道 -->数学-->
已知a是实数,函数f(x)=2ax^2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围a≤-[3+√7]/2或a≥1
题目详情
已知a是实数,函数f(x)=2ax^2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围
a≤-[3+√7]/2或a≥1
a≤-[3+√7]/2或a≥1
▼优质解答
答案和解析
y=f(x)在区间[-1,1]上有零点转化为(2x2-1)a=3-2x在[-1,1]上有解,把a用x表示出来,转化为求函数 y=2x2-13-2x在[-1,1]上的值域,再用分离常数法求函数 y=2x2-13-2x在[-1,1]的值域即可.
a=0时,不符合题意,所以a≠0,
又∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解,⇔(2x2-1)a=3-2x在[-1,1]上有解 ⇔1a=2x2-13-2x
在[-1,1]上有解,问题转化为求函数 y=2x2-13-2x[-1,1]上的值域;
设t=3-2x,x∈[-1,1],则2x=3-t,t∈[1,5],y=12•(t-3)2-2t=12(t+7t-6),
设 g(t)=t+7t.g′(t)=t2-7t2,t∈[1,7)时,g'(t)<0,此函数g(t)单调递减,
t∈(7,5]时,g'(t)>0,此函数g(t)单调递增,
∴y的取值范围是 [7-3,1],
∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解ó 1a∈ [7-3,1]⇔a≥1或 a≤-3+72.
故a≥1或a≤- 3+72.
a=0时,不符合题意,所以a≠0,
又∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解,⇔(2x2-1)a=3-2x在[-1,1]上有解 ⇔1a=2x2-13-2x
在[-1,1]上有解,问题转化为求函数 y=2x2-13-2x[-1,1]上的值域;
设t=3-2x,x∈[-1,1],则2x=3-t,t∈[1,5],y=12•(t-3)2-2t=12(t+7t-6),
设 g(t)=t+7t.g′(t)=t2-7t2,t∈[1,7)时,g'(t)<0,此函数g(t)单调递减,
t∈(7,5]时,g'(t)>0,此函数g(t)单调递增,
∴y的取值范围是 [7-3,1],
∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解ó 1a∈ [7-3,1]⇔a≥1或 a≤-3+72.
故a≥1或a≤- 3+72.
看了 已知a是实数,函数f(x)=...的网友还看了以下:
设a>0,a≠1函数f(x)=loga(x-3)/(x+3),令g(x)与f(x)定义域公共部/为 2020-05-20 …
问一道高一指数函数的题目(1)求证:f(x)=(a^x-a^-x)/2(a>0,且a≠1)是奇函数 2020-06-09 …
给出下列四个结论:①函数y=a^x(a>0且a≠1)与函数y=loga(a^x)(a>0且a≠1) 2020-06-22 …
高一数学,关于指数函数和对数函数已知a>0且a≠1,函数y=a的x次方与y=-以a为底x的对数在同 2020-07-15 …
已知函数f(x)=2alnx-x2+1(1)若a=1,求函数f(x)的单调递减区间;(2)若a>0 2020-07-22 …
一支函数f(x)=xIn(x+1)-a(x+1),其中a为常数(1)若a=0,求函数f(x)的图像 2020-07-23 …
设a>0,且a≠1,函数f(x)=alg(x∧2-2a+1)有最小值,求不等式log(x∧2-5x 2020-07-30 …
1、设P(1,3)为二次函数f(x)=ax2-2ax+b(x>=1)的图像与其反函数y=1/f(x 2020-08-01 …
设a>0且a≠1函数f(x)=ax+x2-xlna-a(1)当a=e时,求函数f(x)的单调区间; 2020-08-02 …
已知函数f(x)=x²-(a+2)x+a+1函数g(x)=11/8x-a^2/4-3/2,称方程f( 2020-12-31 …