早教吧作业答案频道 -->其他-->
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
题目详情
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.
(Ⅰ)求a;
(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
(Ⅰ)求a;
(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
▼优质解答
答案和解析
(Ⅰ)函数的导数f′(x)=3x2-6x+a;f′(0)=a;
则y=f(x)在点(0,2)处的切线方程为y=ax+2,
∵切线与x轴交点的横坐标为-2,
∴f(-2)=-2a+2=0,
解得a=1.
(Ⅱ)当a=1时,f(x)=x3-3x2+x+2,
设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4,
由题设知1-k>0,
当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
则h′(x)=3x2-6x=3x(x-2)在(0,2)上单调递减,在(2,+∞)单调递增,
∴在x=2时,h′(x)取得极小值h′(2)=0,
g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
∴g(x)>h(x)≥h(2)=0,
∴g(x)=0在(0,+∞)上没有实根.
综上当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
则y=f(x)在点(0,2)处的切线方程为y=ax+2,
∵切线与x轴交点的横坐标为-2,
∴f(-2)=-2a+2=0,
解得a=1.
(Ⅱ)当a=1时,f(x)=x3-3x2+x+2,
设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4,
由题设知1-k>0,
当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
则h′(x)=3x2-6x=3x(x-2)在(0,2)上单调递减,在(2,+∞)单调递增,
∴在x=2时,h′(x)取得极小值h′(2)=0,
g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
∴g(x)>h(x)≥h(2)=0,
∴g(x)=0在(0,+∞)上没有实根.
综上当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
看了 已知函数f(x)=x3-3x...的网友还看了以下:
利用Catia曲面设计模块画个物体,画什么为好呢?课程结束了,大作业是通过零件设计和曲面设计版块各 2020-05-16 …
直线y=3分之根3x+b经过点B﹙﹣根3,2﹚,且与x轴交于点A.将抛物线y=3分之1x?沿x轴作 2020-06-08 …
急二重积分坐标变换D是由曲线y=x^3,y=4x^3,x=y^3,x=4y^3所围成的第一象限部分 2020-06-12 …
在直角坐标系中,已知线段AB,点A的坐标为(1,-2),点B的坐标为(3,0),如图1所示.(1) 2020-06-14 …
如图直线y=-1/3x+1分别交x轴y轴于A、B两点,三角形AOB绕点O按逆时针方向旋转90度、直 2020-06-15 …
反比例函数y=kx(x>0)的图象如图,点A是图象上的点,连接OA并延长到B,使得BA=OA,BC 2020-07-20 …
已知直线l:y=x+b交曲线C:y=x的二次方(a>0)于P、Q两点,M为PQ中点,分别过P、Q两 2020-07-31 …
1.一条杆全长15米,正下方5米处有点A,杆自由下落,杆从刚通过A到全部离开A用多长时间?g=10 2020-08-01 …
如图,∠ECF=90°,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CAB的外角平分 2020-08-03 …
我会照样子写句子。例:太阳像个大火炉挂在空中。1.弯弯曲曲的公路像我会照样子写句子。例:太阳像个大火 2020-11-28 …