早教吧作业答案频道 -->其他-->
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
题目详情
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.
(Ⅰ)求a;
(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
(Ⅰ)求a;
(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
▼优质解答
答案和解析
(Ⅰ)函数的导数f′(x)=3x2-6x+a;f′(0)=a;
则y=f(x)在点(0,2)处的切线方程为y=ax+2,
∵切线与x轴交点的横坐标为-2,
∴f(-2)=-2a+2=0,
解得a=1.
(Ⅱ)当a=1时,f(x)=x3-3x2+x+2,
设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4,
由题设知1-k>0,
当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
则h′(x)=3x2-6x=3x(x-2)在(0,2)上单调递减,在(2,+∞)单调递增,
∴在x=2时,h′(x)取得极小值h′(2)=0,
g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
∴g(x)>h(x)≥h(2)=0,
∴g(x)=0在(0,+∞)上没有实根.
综上当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
则y=f(x)在点(0,2)处的切线方程为y=ax+2,
∵切线与x轴交点的横坐标为-2,
∴f(-2)=-2a+2=0,
解得a=1.
(Ⅱ)当a=1时,f(x)=x3-3x2+x+2,
设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4,
由题设知1-k>0,
当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
则h′(x)=3x2-6x=3x(x-2)在(0,2)上单调递减,在(2,+∞)单调递增,
∴在x=2时,h′(x)取得极小值h′(2)=0,
g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
∴g(x)>h(x)≥h(2)=0,
∴g(x)=0在(0,+∞)上没有实根.
综上当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
看了 已知函数f(x)=x3-3x...的网友还看了以下:
)已知二次函数Y=ax2+bx+c的图像与X轴交于(x1,0),(x2,0)两点,且0<x1<1, 2020-05-16 …
已知平面区域D1={(x,y)||x|<2,|y|<2},D2={(x,y)|kx-y+2<0}, 2020-07-09 …
若集合A={X∈Z|-2<x<2},B={y|y=2x^2-1,x∈A}则集合B用列举法表示为{1 2020-07-25 …
(2010•湖南模拟)给出如下三个命题:①若“p且q”为假命题,则p、q均为假命题;②命题“若x≥ 2020-08-01 …
给出如下四个命题:①若“p且q”为假命题,则p、q均为假命题;②命题“若x≥2且y≥3,则x+y≥ 2020-08-01 …
已知二次函数y=ax2+bx+c的图象与轴交于点(-2,0),(x1,0),且1<x1<2,与y轴正 2020-10-31 …
初中数学问题考察函数y=2/x的图像,当x=-2时,y=?当x<-2时,y的取值范围是.当y≥-1时 2020-11-06 …
初中数学题在等式y=ax+b,当x=1,y=-3当x=-3,y=13.求a、b的值当-1<x<2求y 2020-12-03 …
1、已知二次函数y=ax²+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与 2020-12-27 …
问道二次函数数学题已知二次函数y=ax平方+bx+c的图像与x轴交于(x1,0),(x2,0)两点, 2021-02-20 …