早教吧作业答案频道 -->数学-->
如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;②CD=12AE;③∠CDA=45°;④AC+ABAM=定值.其中正确的有()
题目详情
如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;② CD=
其中正确的有( )
![]() |
▼优质解答
答案和解析
过E作EQ⊥AB于Q, ∵∠ACB=90°,AE平分∠CAB, ∴CE=EQ, ∵∠ACB=90°,AC=BC, ∴∠CBA=∠CAB=45°, ∵EQ⊥AB, ∴∠EQA=∠EQB=90°, 由勾股定理得:AC=AQ, ∴∠QEB=45°=∠CBA, ∴EQ=BQ, ∴AB=AQ+BQ=AC+CE,∴①正确; 作∠ACN=∠BCD,交AD于N, ∵∠CAD=
∴∠DBA=90°-22.5°=67.5°, ∴∠DBC=67.5°-45°=22.5°=∠CAD, ∴∠DBC=∠CAD, ∵AC=BC,∠ACN=∠DCB, ∴△ACN≌△BCD, ∴CN=CD, ∵∠ACN+∠NCE=90°, ∴∠NCB+∠BCD=90°, ∴∠CND=∠CDN=45°, ∴∠ACN=45°-22.5°=22.5°=∠CAN, ∴AN=CN, ∴∠NCE=∠AEC=67.5°, ∴CN=NE, ∴CD=AN=EN=
∴②正确,③正确; 过D作DH⊥AB于H, ∵∠MCD=∠CAD+∠CDA=67.5°, ∠DBA=90°-∠DAB=67.5°, ∴∠MCD=∠DBA, ∵AE平分∠CAB,DM⊥AC,DH⊥AB, ∴DM=DH, 在△DCM和△DBH中 ∠M=∠DHB=90°,∠MCD=∠DBA,DM=DH, ∴△DCM≌△DBH, ∴BH=CM, 由勾股定理得:AM=AH, ∴
∴④正确; 故选D. ![]() |
看了 如图,△ABC中,AC=BC...的网友还看了以下:
已知a,b,c都是整数,m=|a+b|+|b-c|+|a-c|,那么( )A. m一定是奇数B. 2020-05-13 …
如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB 2020-06-05 …
4、下列正确的标识符是:()(A)12ab(B)float(C)b6ty(D)aw~1e(m=a> 2020-06-26 …
已知a,b,c都是整数,m=|a+b|+|b-c|+|a-c|,那么()A.m一定是奇数B.m一定 2020-07-13 …
关于直线a,b,c以及平面M,N,给出下面命题:①若a∥M,b∥M,则a∥b②若a∥M,b⊥M,则b 2020-11-02 …
关于直线a,b,l以及平面M,N,下面命题中正确的是()A.若a∥M,b∥M,则a∥bB.若a∥M, 2020-11-02 …
关于直线a、b,以及平面M、N,给出下列命题:①若a∥M,b∥M,则a∥b;②若a∥M,b⊥M,则a 2020-11-02 …
关于直线a、b,以及平面M、N,给出下列命题:①若a∥M,b∥M,则a∥b;②若a∥M,b⊥M,则a 2020-11-02 …
a,b,c表示直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b或a、b相交或a,b异 2020-11-02 …
a,b,c表示直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b;②若b⊂M,a∥b, 2020-11-02 …