早教吧作业答案频道 -->数学-->
求∫(1,0)x^2dx∫(1,x)e^-y^2dy
题目详情
求∫ (1,0)x^2dx∫(1,x) e^-y^2dy
▼优质解答
答案和解析
∫(0到1) dx ∫(x到1) x²e^(-y²) dy
需要交换积分次序
x = 0 到 x = 1,y = 1 到 y = x
∫(0到1) dy ∫(0到y) x²e^(-y²) dx
= ∫(0到1) [e^(-y²) * x³/3]|(0到y) dy
= (1/3)∫(0到1) y³e^(-y²) dy
(u = y²,du = 2y dy)
= (1/3)∫(0到1) u*ye^(-u) * du/(2y)
= (1/6)∫(0到1) ue^(-u) du
= (-1/6)∫(0到1) u d[e^(-u)]
= (-1/6)[ue^(-u)]|(0到1) + (1/6)∫(0到1) e^(-u) du
= (-1/6)e^(-1) - (1/6)[e^(-u)]|(0到1)
= -1/(6e) - (1/6)[e^(-1) - 1]
= -1/(6e) - (1 - e)/(6e)
= (e - 2)/(6e)
需要交换积分次序
x = 0 到 x = 1,y = 1 到 y = x
∫(0到1) dy ∫(0到y) x²e^(-y²) dx
= ∫(0到1) [e^(-y²) * x³/3]|(0到y) dy
= (1/3)∫(0到1) y³e^(-y²) dy
(u = y²,du = 2y dy)
= (1/3)∫(0到1) u*ye^(-u) * du/(2y)
= (1/6)∫(0到1) ue^(-u) du
= (-1/6)∫(0到1) u d[e^(-u)]
= (-1/6)[ue^(-u)]|(0到1) + (1/6)∫(0到1) e^(-u) du
= (-1/6)e^(-1) - (1/6)[e^(-u)]|(0到1)
= -1/(6e) - (1/6)[e^(-1) - 1]
= -1/(6e) - (1 - e)/(6e)
= (e - 2)/(6e)
看了 求∫(1,0)x^2dx∫(...的网友还看了以下:
探究题:(x-1)(x+1)=x^2-1(x-1)(x^2+x+1)=x^3-1探究题:(x-1)( 2020-03-30 …
1/1,-1/2,-2/1,1/3,2/2,1/3,-1/4,-2/3,-3/2,-4/1,1/5 2020-04-09 …
1/2*101/100=101/200这一步是因为什么这么做的?原题是1-1/2^2)(1-1/3 2020-05-14 …
谁会用MATLAB计算 权向量矩阵是A=[1,1/2,3,1,6,8,9,1/2 2,1,5,2, 2020-05-15 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
天才进1,1,2,1,2,1,2,3,3,1,3,2,1,2,3,3,1,3,2,1,3,2,3, 2020-05-21 …
1^2/1^3-(1^2+2^2)/(1^3+2^3)+.-(1^2+2^2+...+80^2)/ 2020-06-02 …
设Tn=1/2^0+2/2+3/2^3+…+n/2^(n-1)(1)(1/2)*(1)得:(1/2 2020-06-02 …
1/(1^2)+1/(2^2)+1/(3^2)+1/(4^2)+1/(5^2)+1/(6^2)+1 2020-06-11 …
如果设y=x^2/1+x^2=f(x),并且(f)表示当x=1时,y的值,既f(1)=1^2/1^2 2021-02-05 …