早教吧作业答案频道 -->数学-->
设X1=2,Xn+1=2+1/Xn,n>=1,求证当n趋于无穷时,极限Xn存在.
题目详情
设X1=2,Xn+1=2+1/Xn,n>=1,求证当n趋于无穷时,极限Xn存在.
▼优质解答
答案和解析
先求通项吧
我用表示下标.
X=2+1/X,两边同加待定参数q,
X+q=2+q+1/X=[(2+q)X+1]/X,两边取倒数,
1/(X+q)=X/[(2+q)X+1],
1/(X+q)=1/(2+q)*{1/(2+q)^2 / [X+1/(2+q)]},
令q=1/(2+q),可解出q,这里暂不解出.原式变成
1/(X+q)=q-q^2/(X+q),令a=1/(X+q),a=1/(X+q),原式变为
a=q-q^2*a,两边同加p,用待定参数法得到p=-q/(q^2+1)时,a+p是等比数列,公比是-q^2,即
(a+p)=-q^2*(a+p),所以
a+p=(a+p)*(-q^2)^(n-1)
X=1/{[1/(X+q)+p](-q^2)^(n-1)-p}-q.
现在求出q,q=-1+sqrt(2)1,
对于小于1的q,在n趋于无穷时(-q^2)^(n-1)趋于零(有界乘以无穷小还是无穷小),所以
limX=-1/p-q=1/q=1+sqrt(2),
对于大于1的q,在n趋于无穷时(-q^2)^(n-1)趋于无穷大,但因为在分母上,所以整个这一项为零,所以
limX=-q=1+sqrt(2),
结果无论q取哪个解limX都等于1+sqrt(2),即-无穷
我用表示下标.
X=2+1/X,两边同加待定参数q,
X+q=2+q+1/X=[(2+q)X+1]/X,两边取倒数,
1/(X+q)=X/[(2+q)X+1],
1/(X+q)=1/(2+q)*{1/(2+q)^2 / [X+1/(2+q)]},
令q=1/(2+q),可解出q,这里暂不解出.原式变成
1/(X+q)=q-q^2/(X+q),令a=1/(X+q),a=1/(X+q),原式变为
a=q-q^2*a,两边同加p,用待定参数法得到p=-q/(q^2+1)时,a+p是等比数列,公比是-q^2,即
(a+p)=-q^2*(a+p),所以
a+p=(a+p)*(-q^2)^(n-1)
X=1/{[1/(X+q)+p](-q^2)^(n-1)-p}-q.
现在求出q,q=-1+sqrt(2)1,
对于小于1的q,在n趋于无穷时(-q^2)^(n-1)趋于零(有界乘以无穷小还是无穷小),所以
limX=-1/p-q=1/q=1+sqrt(2),
对于大于1的q,在n趋于无穷时(-q^2)^(n-1)趋于无穷大,但因为在分母上,所以整个这一项为零,所以
limX=-q=1+sqrt(2),
结果无论q取哪个解limX都等于1+sqrt(2),即-无穷
看了 设X1=2,Xn+1=2+1...的网友还看了以下:
证明:f(x)=limx*sinx的极限不存在!这道题书上说取Xn=2nπ+π/2 则极限为无穷 2020-05-13 …
一道求极限的题,设数列{Xn}的一般项Xn=(cos(nPI/2))/n,求lim(n→∞)Xn= 2020-05-14 …
高数 设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与 2020-05-16 …
求极限,当Xn=,则当n趋于无穷Xn的极限.这里因打不出分式的形式,减n是不在分式里的. 2020-05-17 …
设数列{Xn}的一般项Xn=1/n*cos(nπ/2),当n→无穷大时,Xn的极限等于多少?求出N 2020-06-23 …
一道关于极限的高数题设x(n+1)=ln(1+xn),x1>0第一个问题:求lim(n趋于正无穷) 2020-07-30 …
设数列通项为xn=(n^2+√n)/n,若n为奇数;1/n,若n为偶数,当n→∞时,{xn}是() 2020-07-31 …
一道敛散性判断题若函数f(x)在开区间正负无穷内连续,{Xn}为一数列.为什么当{Xn}收敛时,必 2020-08-01 …
数列的极限不知道的不要乱回答证明:方程x^n+x^(n-1)+……+x^2+x=1,在(0,1)上 2020-08-02 …
观察下列数列{Xn}当n→∞时的变化趋势,判定它们是否收敛,在收敛时指出它们的极限1),Xn=lg( 2020-12-09 …