早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和Sn,且Sn+1/2an=1设bn=log3(1-Sn+1),求适合方程1/b1b2+1/b2b3+``````+1/bnbn+1=25/51的n的值
题目详情
已知数列{an}的前n项和Sn,且Sn+1/2an=1
设bn=log3(1-Sn+1),求适合方程1/b1b2+1/b2b3+``````+1/bnbn+1=25/51的n的值
设bn=log3(1-Sn+1),求适合方程1/b1b2+1/b2b3+``````+1/bnbn+1=25/51的n的值
▼优质解答
答案和解析
Sn+(1/2)an=1
n=1,a1= 2/3
Sn+(1/2)an=1
Sn+(1/2)[Sn-S(n-1)]=1
(3/2)Sn = (1/2)S(n-1) +1
Sn = (1/3)S(n-1) + (2/3)
Sn - 1 = (1/3)(S(n-1) - 1)
{Sn - 1} 是等比数列,q=1/3
Sn - 1 = (1/3)^(n-1) .[S1 - 1]
=-1/3^n
Sn = 1- 1/3^n
bn=log[1-S(n+1) ]
=log[1/3^(n+1) ]
=-(n+1)
1/[bn.b(n+1)] = 1/[(n+1)(n+2)] = 1/(n+1) - 1/(n+2)
1/(b1b2)+1/(b2b3)+...+1/(bnb(n+1)) = 25/51
1/2 - 1/(n+2) = 25/51
1/(n+2) = 1/102
n+2= 102
n=100
n=1,a1= 2/3
Sn+(1/2)an=1
Sn+(1/2)[Sn-S(n-1)]=1
(3/2)Sn = (1/2)S(n-1) +1
Sn = (1/3)S(n-1) + (2/3)
Sn - 1 = (1/3)(S(n-1) - 1)
{Sn - 1} 是等比数列,q=1/3
Sn - 1 = (1/3)^(n-1) .[S1 - 1]
=-1/3^n
Sn = 1- 1/3^n
bn=log[1-S(n+1) ]
=log[1/3^(n+1) ]
=-(n+1)
1/[bn.b(n+1)] = 1/[(n+1)(n+2)] = 1/(n+1) - 1/(n+2)
1/(b1b2)+1/(b2b3)+...+1/(bnb(n+1)) = 25/51
1/2 - 1/(n+2) = 25/51
1/(n+2) = 1/102
n+2= 102
n=100
看了 已知数列{an}的前n项和S...的网友还看了以下:
已知数列{a(n)}中,a(1)=2,a(n)-a(n-1)-2n=0(n≥2,n∈N),设Bn= 2020-05-21 …
已知数列(An)满足A1=2,对于任意的n属于正整数,都有An大于0,且满足(n+1)×((An) 2020-07-20 …
括号为下标在数列[a(n)]中,已知a(1)=2,a(n+1)=4a(n)-3n+1,n∈N*.1 2020-07-29 …
等比数列,求通项公式,((在线等待))!(1)已知,A1=1,An-A(n-1)=1/n(n-1) 2020-08-02 …
无穷数列an中,a1=1,an=√(an-1)^2+4,(n>=2,n属于N*)已知数列{an}中 2020-08-02 …
1、向量m=(a,2),n=(1,b-1),a>0,b>0,m,n的夹角为π/2,求1/a+2/b的 2020-11-24 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
高二数学问题2已知数列{a[n]}中,a1=1,a2=r(r大于0)且数列{a[n]*a[n+1]} 2020-11-29 …
离散数学--阿克曼函数已知阿克曼函数A:N*N-->N的定义为:(1)A(0,n)=n+1,n>=0 2020-12-08 …
已知数列{an}中,a1=1/2点(n,2a(n+1)-an)在直线y=x上其中n=1,2,3,4, 2020-12-24 …