早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线
题目详情
如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),
将此三角板绕原点O逆时针旋转90°,得到△A′B′O.
(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;
(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.
(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.

(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;
(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.
(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.
▼优质解答
答案和解析
(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,
又A(0,1),B(2,0),O(0,0),
∴A′(-1,0),B′(0,2).----------(1分)
方法一:
设抛物线的解析式为:y=ax2+bx+c(a≠0),
∵抛物线经过点A′、B′、B,
∴
,
解得:
,
∴满足条件的抛物线的解析式为y=-x2+x+2.----------(3分)
方法二:∵A′(-1,0),B′(0,2),B(2,0),
设抛物线的解析式为:y=a(x+1)(x-2)
将B′(0,2)代入得出:2=a(0+1)(0-2),
解得:a=-1,
故满足条件的抛物线的解析式为y=-(x+1)(x-2)=-x2+x+2;

(2)∵P为第一象限内抛物线上的一动点,
设P(x,y),则x>0,y>0,P点坐标满足y=-x2+x+2.
连接PB,PO,PB′,
∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,
=
×1×2+
×2×x+
×2×y,
=x+(-x2+x+2)+1,
=-x2+2x+3.----------(5分)
∵A′O=1,B′O=2,∴△A′B′O面积为:
×1×2=1,
假设四边形PB′A′B的面积是△A′B′O面积的4倍,则
4=-x2+2x+3,
即x2-2x+1=0,
解得:x1=x2=1,
此时y=-12+1+2=2,即P(1,2).----------(7分)
∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.----------(8分)
(3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可.
①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;
③等腰梯形上底与下底平行;④等腰梯形两腰相等.----------(10分)
或用符号表示:
①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.----------(10分)
又A(0,1),B(2,0),O(0,0),
∴A′(-1,0),B′(0,2).----------(1分)
方法一:
设抛物线的解析式为:y=ax2+bx+c(a≠0),
∵抛物线经过点A′、B′、B,
∴
|
解得:
|
∴满足条件的抛物线的解析式为y=-x2+x+2.----------(3分)
方法二:∵A′(-1,0),B′(0,2),B(2,0),
设抛物线的解析式为:y=a(x+1)(x-2)
将B′(0,2)代入得出:2=a(0+1)(0-2),
解得:a=-1,
故满足条件的抛物线的解析式为y=-(x+1)(x-2)=-x2+x+2;

(2)∵P为第一象限内抛物线上的一动点,
设P(x,y),则x>0,y>0,P点坐标满足y=-x2+x+2.
连接PB,PO,PB′,
∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,
=
1 |
2 |
1 |
2 |
1 |
2 |
=x+(-x2+x+2)+1,
=-x2+2x+3.----------(5分)
∵A′O=1,B′O=2,∴△A′B′O面积为:
1 |
2 |
假设四边形PB′A′B的面积是△A′B′O面积的4倍,则
4=-x2+2x+3,
即x2-2x+1=0,
解得:x1=x2=1,
此时y=-12+1+2=2,即P(1,2).----------(7分)
∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.----------(8分)
(3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可.
①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;
③等腰梯形上底与下底平行;④等腰梯形两腰相等.----------(10分)
或用符号表示:
①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.----------(10分)
看了 如图,在平面直角坐标系中放置...的网友还看了以下:
在线段[0,10]上随机选3个点,分别记原点0到这三个点的长度为x,y,z,试计算长度为x,y,z 2020-05-17 …
∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^ 2020-05-17 …
设曲线弧L为x^2+y^2=ax(a>0)从点A(a,0)到点O(0,0)的上半圆弧,求∫(e^x 2020-05-17 …
y=根号(x^2+4)-根号(x^2+2x+10)就是点P(x,0)到点A(0,-4)和点B(-1 2020-06-03 …
高数疑难求解求{x=3t,y=3t^2,z=2t^3}中,从点O(0,0,0)到点A(3,3,2) 2020-06-14 …
已知点f(0,35/4)直线l:y=41/4,动点m(x,y)(y>0)到点f的距离比到直线的距离 2020-06-25 …
高数积分空间曲线x=ty=3t^2z=2t^3从点O(0,0,0)到点A(3,3,2)的弧长.答案 2020-07-26 …
曲线积分设变力(向量)F(x,y)的大小与点的横坐标的平方成正比,方向与x轴的负方向一致,问这个力 2020-07-31 …
在平面直角坐标系xOy中,已知动点P(x,y)(y小于等于0)到点F(0,-2)的距离为d1,到x轴 2020-10-31 …
z-x^2y^3=0在(1,1,1)的切平面方程是2求f(x,y)=x^3+y^3-3xy+1的极小 2020-11-01 …