早教吧作业答案频道 -->其他-->
(2009•武汉)如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.(1)求证:△ABF∽△COE;(2)当O为AC的中点,ACAB=2时,如图2,求OFOE的值;
题目详情
(2009•武汉)如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边
上一点,连接BO交AD于F,OE⊥OB交BC边于点E.
(1)求证:△ABF∽△COE;
(2)当O为AC的中点,
=2时,如图2,求
的值;
(3)当O为AC边中点,
=n时,请直接写出
的值.
上一点,连接BO交AD于F,OE⊥OB交BC边于点E.(1)求证:△ABF∽△COE;
(2)当O为AC的中点,
| AC |
| AB |
| OF |
| OE |
(3)当O为AC边中点,
| AC |
| AB |
| OF |
| OE |
▼优质解答
答案和解析
(1)证明:∵AD⊥BC,
∴∠DAC+∠C=90°.
∵∠BAC=90°,
∴∠BAF=∠C.
∵OE⊥OB,
∴∠BOA+∠COE=90°,
∵∠BOA+∠ABF=90°,
∴∠ABF=∠COE.
∴△ABF∽△COE.
(2)过O作AC垂线交BC于H,
则OH∥AB,
由(1)得∠ABF=∠COE,∠BAF=∠C.
∴∠AFB=∠OEC,
∴∠AFO=∠HEO,
而∠BAF=∠C,
∴∠FAO=∠EHO,
∴△OEH∽△OFA,
∴OF:OE=OA:OH
又∵O为AC的中点,OH∥AB.
∴OH为△ABC的中位线,
∴OH=
AB,OA=OC=
AC,
而
=2,
∴OA:OH=2:1,
∴OF:OE=2:1,即
=2;
(3)
=n.
∴∠DAC+∠C=90°.
∵∠BAC=90°,
∴∠BAF=∠C.
∵OE⊥OB,
∴∠BOA+∠COE=90°,
∵∠BOA+∠ABF=90°,
∴∠ABF=∠COE.
∴△ABF∽△COE.
(2)过O作AC垂线交BC于H,
则OH∥AB,由(1)得∠ABF=∠COE,∠BAF=∠C.
∴∠AFB=∠OEC,
∴∠AFO=∠HEO,
而∠BAF=∠C,
∴∠FAO=∠EHO,
∴△OEH∽△OFA,
∴OF:OE=OA:OH
又∵O为AC的中点,OH∥AB.
∴OH为△ABC的中位线,
∴OH=
| 1 |
| 2 |
| 1 |
| 2 |
而
| AC |
| AB |
∴OA:OH=2:1,
∴OF:OE=2:1,即
| OF |
| OE |
(3)
| OF |
| OE |
看了 (2009•武汉)如图1,在...的网友还看了以下:
已知球O的球面有四点S,A,B,C,其中O,A,B,C,四点共面,△ABC是边长为2的已知球O的球 2020-04-26 …
已知:如图,以△ABC的边AB为直径的⊙O交边AC于点D,且过点D的切线DE平分边BC. (1)B 2020-05-16 …
平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),将四边形绕 2020-05-16 …
如图所示,点O,B分别用(0,0),(6,0)表示,将△OAB绕B点按顺时针方向旋转90゜得到O△ 2020-06-19 …
如图,△ABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,P是 2020-07-26 …
平行四边形ABCO四个定点坐标分别是A(√3,√3)B(3√3,√3)C(2√3,0)O(0,0) 2020-07-30 …
作图(1)已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.(2)已知四边 2020-08-01 …
如图所示,点A、O、B在同一条直线上,∠AOC=1/2∠BOC+30°,OE平分∠BOC,求BOE 2020-08-02 …
如图所示,点A、O、B在同一条直线上,∠AOC=1/2∠BOC+30°,OE平分∠BOC,求BOE 2020-08-02 …
AB两村在河边同旁以河边为X轴A(O,2)b(4,1)在河边P处修一个水泵现要在河边P处修建一个水泵 2020-12-08 …