早教吧作业答案频道 -->数学-->
证明:若函数fx的导数为常数则fx为x的线性代数
题目详情
证明:若函数fx的导数为常数则fx为x的线性代数
▼优质解答
答案和解析
设f'(x)=k
由拉格朗日中值定理,存在t属于(0,x)或(x,0)使得
f(x)-f(0)=f'(t)(x-0)=cx
f(x)=cx+f(0)是线性函数
由拉格朗日中值定理,存在t属于(0,x)或(x,0)使得
f(x)-f(0)=f'(t)(x-0)=cx
f(x)=cx+f(0)是线性函数
看了 证明:若函数fx的导数为常数...的网友还看了以下:
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无 2020-05-13 …
两个可导函数乘积是否可导?为什么?例题:f(x)在a,b上连续,在(a,b)内可导,且f(a)=0 2020-05-14 …
高等数学介值定理证明题目设f(x)在[0,π/2]上的一阶导数连续,在(0,π/2)内二阶可导,且 2020-06-10 …
证明一个函数处处可导设f(x)满足:1.f(x+y)=f(x)+f(y),对一切x,y属于R2.f 2020-06-12 …
高数求导问题设f(x)和g(x)是在R上定义的函数,且具有如下性质:(1)f(x+y)=f(x)g 2020-06-18 …
1,曲线y=x^2上哪些点处的切线的倾角为45°,60°,2,若f(x)处处有切线,则函数y=f( 2020-07-09 …
高数证明题1设函数f(x)在[1.2]上连续,在{1,2}内可导,且f(2)=0,F(x)=(x- 2020-07-22 …
微积分设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少微 2020-07-31 …
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(已知函 2020-11-02 …
f(x)在[a,b]上连续(a,b)上可导,且f(a)=f(b)=0证明任取k属于R,存在ξ属于(a 2020-11-03 …