早教吧作业答案频道 -->数学-->
高数求导问题设f(x)和g(x)是在R上定义的函数,且具有如下性质:(1)f(x+y)=f(x)g(y)+f(y)g(x);(2)f(x)和g(x)在点x=0处求导,且f(0)=0,g(0)=1,证明:f(x)在R上可导
题目详情
高数求导问题
设f(x)和g(x)是在R上定义的函数,且具有如下性质:(1)f(x+y)=f(x)g(y)+f(y)g(x);(2)f(x)和g(x)在点x=0处求导,且f(0)=0,g(0)=1,证明:f(x)在R上可导
设f(x)和g(x)是在R上定义的函数,且具有如下性质:(1)f(x+y)=f(x)g(y)+f(y)g(x);(2)f(x)和g(x)在点x=0处求导,且f(0)=0,g(0)=1,证明:f(x)在R上可导
▼优质解答
答案和解析
由f(x+y)=f(x)g(y)+f(y)g(x);
得f'(x)=f(x+dx)/dx=[f(x)g(dx)+f(dx)g(x)]/dx=f'(x)+f(dx)g(x)/dx;
得f(dx)g(x)/dx=0;即g(x)处处可导,
再代回(1)得到f'(x)=f(x)/dx,
因为f(x)是在R上定义的函数,
所以f'(x)处处有定义,处处可导.
得f'(x)=f(x+dx)/dx=[f(x)g(dx)+f(dx)g(x)]/dx=f'(x)+f(dx)g(x)/dx;
得f(dx)g(x)/dx=0;即g(x)处处可导,
再代回(1)得到f'(x)=f(x)/dx,
因为f(x)是在R上定义的函数,
所以f'(x)处处有定义,处处可导.
看了 高数求导问题设f(x)和g(...的网友还看了以下:
f(x)=∫(0,2x)f(t/2)dt+ln2,显然f(0)=ln2两边求导f'(x)=f(2x/ 2020-03-31 …
求助高数罗尔定理的一个细节问题F(x)在[0,1]可导,F(1)=F(a),a∈[0,1/2],由 2020-05-13 …
两个可导函数乘积是否可导?为什么?例题:f(x)在a,b上连续,在(a,b)内可导,且f(a)=0 2020-05-14 …
如果f(x)在x0可导,g(x)在x0不可导,则f(x)g(x)在x0?如果f(x)在x0可导,g 2020-06-11 …
设f(x)可导,F(x)=f(x)(1+|x|),要使F(x)在x=0处可导,则必有()设f(x) 2020-06-11 …
设f(x)在(a,b)内连续,且x0∈(a,b),则在点x0处()A.f(x)的极限存在,且可导B 2020-07-16 …
设函数f(x)定义在[a,b]上,下面命题正确的是f(x)可导,则f(x)连续f(x)不可导,则f 2020-07-16 …
导数定义领域设f(x)在x=x.的某领域内有定义,在x=x.的某去心领域内可导,若f'(x.)存在且 2020-11-03 …
函数f(x)在x=-1处不一定可导,如f(x)=|x+1|=x+1,x>-10x=-1-x-1,x< 2020-11-20 …
复合函数求导设f(x)=x三次方,f(a-bx)的导数是?答案是和f(x)=(a-bx)三次方的导数 2021-02-16 …