早教吧作业答案频道 -->其他-->
如图△ABC中,CA=CB,∠ABC=90°,D为△ABC外一点,且AD⊥BD,BD交AC于E,G为BC上一点,且∠BCG=∠DCA,过G点作GH⊥CG交CB于H.(1)求证:CD=CG;(2)若AD=CG,求证:AB=AC+BH.
题目详情

(1)求证:CD=CG;
(2)若AD=CG,求证:AB=AC+BH.
▼优质解答
答案和解析
证明:(1)∵CA=CB,∠ABC=90°,
∴∠BAC=∠ABC=45°,
∵AD⊥BD,
∴∠DAC+45°+∠ABD=90°,
∴∠DAC+∠ABD=45°,
∵∠GBC+∠ABD=∠ABC=45°,
∴∠DAC=∠GBC,
在△ACD和△BCG中,
,
∴△ACD≌△BCG(ASA),
∴CD=CG;
(2)如图,延长CG交AB于F,
∵∠BCG=∠DCA,
∴∠DCG=∠DCA+∠ACG=∠BCG+∠ACG=∠ACB=90°,
又∵CD=CG,
∴△CDG是等腰直角三角形,
∴∠CGD=45°,
∵GH⊥CG,∠BGF=∠CGD(对顶角相等),
∴∠BGH=∠BGF,
∵△ACD≌△BCG,
∴AD=BG,
∵AD=CG,
∴BG=CG,
∴∠BCG=∠CBG,
由三角形的外角性质,∠BGF=∠BCG+∠CBG=45°,
∴∠CBG=22.5°,
∴∠GBF=∠ABC-∠CBG=45°-22.5°=22.5°,
∴∠CBG=∠GBF,
在△BGF和△BGH中,
,
∴△BGF≌△BGH(ASA),
∴BH=BF,
又∵∠AFC=∠ABD+∠BGF=22.5°+45°=67.5°,
∴∠ACF=180°-∠BAC-∠AFC=180°-45°-67.5°=67.5°,
∴∠ACF=∠AFC=67.5°,
∴AC=AF,
∵AB=AF+BF,
∴AB=AC+BH.
∴∠BAC=∠ABC=45°,
∵AD⊥BD,
∴∠DAC+45°+∠ABD=90°,
∴∠DAC+∠ABD=45°,
∵∠GBC+∠ABD=∠ABC=45°,
∴∠DAC=∠GBC,
在△ACD和△BCG中,
|
∴△ACD≌△BCG(ASA),
∴CD=CG;
(2)如图,延长CG交AB于F,
∵∠BCG=∠DCA,
∴∠DCG=∠DCA+∠ACG=∠BCG+∠ACG=∠ACB=90°,
又∵CD=CG,
∴△CDG是等腰直角三角形,
∴∠CGD=45°,

∵GH⊥CG,∠BGF=∠CGD(对顶角相等),
∴∠BGH=∠BGF,
∵△ACD≌△BCG,
∴AD=BG,
∵AD=CG,
∴BG=CG,
∴∠BCG=∠CBG,
由三角形的外角性质,∠BGF=∠BCG+∠CBG=45°,
∴∠CBG=22.5°,
∴∠GBF=∠ABC-∠CBG=45°-22.5°=22.5°,
∴∠CBG=∠GBF,
在△BGF和△BGH中,
|
∴△BGF≌△BGH(ASA),
∴BH=BF,
又∵∠AFC=∠ABD+∠BGF=22.5°+45°=67.5°,
∴∠ACF=180°-∠BAC-∠AFC=180°-45°-67.5°=67.5°,
∴∠ACF=∠AFC=67.5°,
∴AC=AF,
∵AB=AF+BF,
∴AB=AC+BH.
看了 如图△ABC中,CA=CB,...的网友还看了以下:
设F(X),G(X)是数域K上的不可约多项式,存在C属于C,若X-C整除F(X),G(X),则G( 2020-06-03 …
一个人蹲在磅秤上不动时,称其重力为G,当此人突然站起时,在整个站起过程中,磅秤的读数为:A.先小于 2020-07-15 …
已知抛物线y=-316(x-1)(x-9)与x轴交于A,B两点,对称轴与抛物线交于点C,与x轴交于 2020-07-19 …
如图,在△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径作C,点G是C 2020-07-20 …
f(x)是定义在区间[-c,c]上的奇函数,其图象如图所示:令g(x)=af(x)+b,则下列关于 2020-07-30 …
G是一个非空集合,“O”为定义在G中任意两个元素之间的二元代数运算,若G及其运算满足对于任意的a, 2020-08-01 …
为什么群的中心是群呢?因为首先1属于C(G),因为1能与群中任何元素交换;其次,如果x属于C(G), 2020-11-03 …
请问一下A串联于B上,B并联于C上怎么翻译那? 2020-11-11 …
碱基计算的规律.①A等于T,G等于C,A+G=T+CA+G/T+C等1.②一条单链的A+G/T+C的 2020-11-27 …
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f'(x)=g'(x),x属于(a,b 2020-12-23 …